这是算法理论中的一个简单问题。 它们之间的区别是,在一种情况下,你计算节点的数量,在另一种情况下,计算根节点和具体节点之间最短路径上的边的数量。 哪个是哪个?


当前回答

树的整体深度等于树的高度,树的级别也一样,但如果对于特定的节点高度不等于深度,因为深度的定义表明从根节点到该节点的最长路径,对于高度,它是从该节点到叶节点。

总体树,D=H=L 但D可能不等于H。

其他回答

简单的回答是: 深度: 1. 树:从树的根节点到叶节点的边/弧的数量称为树的深度。 2. 节点:从根节点到该节点的边数/弧数称为该节点的深度。

另一种理解这些概念的方式如下: 深度:在根位置画一条水平线,并将这条线作为地面。所以根结点的深度是0,它所有的子结点都向下增长所以每一层结点的深度都是+ 1。

高度:同样的水平线,但这次地面位置是外部节点,这是树的叶子,向上计数。

节点的“深度”(或等效的“层数”)是根节点“路径”上的边数

节点的“高度”是指从该节点到叶节点的最长路径上的边数。

树的高度和深度是相等的……

但是节点的高度和深度是不相等的,因为…

高度是通过从给定节点遍历到可能最深的叶来计算的。

深度是从根到给定节点.....的遍历计算的

树的整体深度等于树的高度,树的级别也一样,但如果对于特定的节点高度不等于深度,因为深度的定义表明从根节点到该节点的最长路径,对于高度,它是从该节点到叶节点。

总体树,D=H=L 但D可能不等于H。