这是算法理论中的一个简单问题。 它们之间的区别是,在一种情况下,你计算节点的数量,在另一种情况下,计算根节点和具体节点之间最短路径上的边的数量。 哪个是哪个?
当前回答
节点深度是指从树的根节点到该节点的路径中存在的边数。
节点的高度是指连接该节点到叶节点的最长路径中存在的边数。
其他回答
简单的回答是: 深度: 1. 树:从树的根节点到叶节点的边/弧的数量称为树的深度。 2. 节点:从根节点到该节点的边数/弧数称为该节点的深度。
根据Cormen等人。算法简介(附录B.5.3),树T中节点X的深度定义为从T的根节点到X的简单路径的长度(边数),节点Y的高度是从Y到叶子的最长的向下简单路径上的边数。树的高度定义为其根节点的高度。
注意,简单路径是没有重复顶点的路径。
树的高度等于树的最大深度。节点的深度和高度不一定相等。这些概念的说明见Cormen et al.第三版的图B.6。
我有时会遇到要求计算节点(顶点)而不是边的问题,所以如果你不确定是否应该在考试或工作面试中计算节点或边,就要求澄清。
我了解到深度和高度是节点的属性:
节点深度是指从该节点到树的根节点的边数。根节点的深度为0。 节点的高度是指从该节点到叶节点的最长路径上的边数。叶节点的高度为0。
树的属性:
树的高度是它的根节点的高度,或者等价地,是它最深节点的深度。 树的直径(或宽度)是任意两个叶节点之间的最长路径上的节点数。下面的树直径为6个节点。
另一种理解这些概念的方式如下: 深度:在根位置画一条水平线,并将这条线作为地面。所以根结点的深度是0,它所有的子结点都向下增长所以每一层结点的深度都是+ 1。
高度:同样的水平线,但这次地面位置是外部节点,这是树的叶子,向上计数。
树的整体深度等于树的高度,树的级别也一样,但如果对于特定的节点高度不等于深度,因为深度的定义表明从根节点到该节点的最长路径,对于高度,它是从该节点到叶节点。
总体树,D=H=L 但D可能不等于H。