我更喜欢尽可能少的正式定义和简单的数学。


当前回答

仅仅是以快速而简单的方式表达一个算法的复杂性。 大 O 评分存在,以解释任何算法的最佳、最糟糕和平均案例时间复杂性。

否则,与这些功能工作是非常困难的,因为它们倾向于:

有太多的泡沫 - 像二进制搜索这样的算法通常运行得更快,因为序列分区工作得很好,因为 n = 2k − 1 的尺寸,因为序列分区工作得更快。 这个细节并不特别重要,但它警告我们,任何算法的准确时间复杂性功能可能非常复杂,如图2.2 所示,有很少的上下泡沫。

https://mimoza.marmara.edu.tr/~msakalli/cse706_12/SkienaTheAlgorithmDesignMan ual.pdf

其他回答

仅仅是以快速而简单的方式表达一个算法的复杂性。 大 O 评分存在,以解释任何算法的最佳、最糟糕和平均案例时间复杂性。

否则,与这些功能工作是非常困难的,因为它们倾向于:

有太多的泡沫 - 像二进制搜索这样的算法通常运行得更快,因为序列分区工作得很好,因为 n = 2k − 1 的尺寸,因为序列分区工作得更快。 这个细节并不特别重要,但它警告我们,任何算法的准确时间复杂性功能可能非常复杂,如图2.2 所示,有很少的上下泡沫。

https://mimoza.marmara.edu.tr/~msakalli/cse706_12/SkienaTheAlgorithmDesignMan ual.pdf

Big-O 是由程序所消耗的资源增加率,即问题例大小。

资源:可能是CPU时间,可能是最大 RAM 空间。

说问题是“找到金额”,

int Sum(int*arr,int size){
      int sum=0;
      while(size-->0) 
         sum+=arr[size]; 

      return sum;
}

problem-instance= {5,10,15} ==> problem-instance-size = 3, iterations-in-loop= 3

problem-instance= {5,10,15,20,25} ==> problem-instance-size = 5 iterations-in-loop = 5

说问题是“找到组合”,

    void Combination(int*arr,int size)
    { int outer=size,inner=size;
      while(outer -->0) {
        inner=size;
        while(inner -->0)
          cout<<arr[outer]<<"-"<<arr[inner]<<endl;
      }
    }

problem-instance= {5,10,15} ==> problem-instance-size = 3, total-iterations = 3*3 = 9

problem-instance= {5,10,15,20,25} ==> problem-instance-size = 5, total-iterations= 5*5 = 25

对于“n”尺寸的输入,该程序以序列中的“n*n”节点的速度生长,因此,Big-O是N2以O(n2)表达。

O(n2):被称为四方复杂性

1 件: 1 件 10 件: 100 件 100 件: 10,000 件

请注意,物品的数量增加了10个因素,但时间增加了102个因素。

O(n):被称为线性复杂性

1 件: 1 操作 10 件: 10 操作 100 件: 100 操作

这一次,元素的数量增加了10个因素,所以时间n=10,所以O(n)的规模因素是10。

O(1):被称为恒久复杂性

1 件: 1 操作 10 件: 2 操作 100 件: 3 操作 1000 件: 4 操作 10,000 件: 5 操作

他们降低了数学,所以它可能不是准确的n2或他们说它是什么,但这将是规模的支配因素。

statement;

是持久的. 声明的运行时间不会与 N 相比变化

for ( i = 0; i < N; i++ )
  statement;

for ( i = 0; i < N; i++ ) 
{
for ( j = 0; j < N; j++ )
  statement;
}

是四角形的,两条路的运行时间相当于N的平面,当N翻倍时,运行时间增加为N * N。

while ( low <= high ) 
{
 mid = ( low + high ) / 2;
 if ( target < list[mid] )
 high = mid - 1;
 else if ( target > list[mid] )
  low = mid + 1;
else break;
}

算法的运行时间是相当于 N 可以分为 2 次的次数。

void quicksort ( int list[], int left, int right )
{
  int pivot = partition ( list, left, right );
  quicksort ( list, left, pivot - 1 );
  quicksort ( list, pivot + 1, right );
}

是 N * log ( N ). 运行时间由 N 轮子(以色列或重复)组成,它们是 logarithmic,因此算法是线性和 logarithmic 的组合。

一般来说,做某些东西与每个项目在一个维度是线性的,做某些东西与每个项目在两个维度是四方的,并将工作区域分成一半是逻辑的。 还有其他大 O 测量,如圆形,曝光,和平方根,但它们不被报告为常见。 大 O 评分被描述为 O( )在哪里是测量。

查看更多: 这里


最简单的定义我可以给大 Oh 评分是:

智者可能已经意识到,我们可以表达操作的数量如:n2 + 2n. 但是,正如你从我们的例子中看到的两个数字的百万数字左右,第二个术语(2n)变得毫无意义(计算为0.0002%的总操作在这个阶段)。

因此,要找到一个名字给了电话号码(逆转搜索):

最佳案例:O(1);预期案例:O(n)(为500,000);最糟糕案例:O(n)(为1000,000)。

旅行卖家

听起来很简单吗?再想一想。

聚合物时间

另一个我想快速提到的是,任何具有O(na)复杂性的算法都说具有多元复杂性,或者在多元时间可溶解。