我需要在半径为R的圆内生成一个均匀随机点。
我意识到,只要在区间[0…2π),且在区间(0…R)我最终会有更多的点指向中心,因为对于两个给定的半径,小半径内的点会比大半径内的点彼此更接近。
我在这里找到了一篇关于这个的博客文章,但我不明白他的推理。我认为这是正确的,但我真的很想知道他从哪里得到(2/R2)×r以及他如何得到最终解。
更新:在发布这个问题7年之后,关于平方根算法背后的数学问题,我仍然没有得到一个令人满意的答案。所以我花了一天时间自己写了一个答案。链接到我的答案。
我需要在半径为R的圆内生成一个均匀随机点。
我意识到,只要在区间[0…2π),且在区间(0…R)我最终会有更多的点指向中心,因为对于两个给定的半径,小半径内的点会比大半径内的点彼此更接近。
我在这里找到了一篇关于这个的博客文章,但我不明白他的推理。我认为这是正确的,但我真的很想知道他从哪里得到(2/R2)×r以及他如何得到最终解。
更新:在发布这个问题7年之后,关于平方根算法背后的数学问题,我仍然没有得到一个令人满意的答案。所以我花了一天时间自己写了一个答案。链接到我的答案。
当前回答
程序员解决方案:
创建一个位图(布尔值的矩阵)。你想要多大就有多大。 在位图中画一个圆。 创建一个圆的点查找表。 在这个查找表中选择一个随机索引。
const int RADIUS = 64;
const int MATRIX_SIZE = RADIUS * 2;
bool matrix[MATRIX_SIZE][MATRIX_SIZE] = {0};
struct Point { int x; int y; };
Point lookupTable[MATRIX_SIZE * MATRIX_SIZE];
void init()
{
int numberOfOnBits = 0;
for (int x = 0 ; x < MATRIX_SIZE ; ++x)
{
for (int y = 0 ; y < MATRIX_SIZE ; ++y)
{
if (x * x + y * y < RADIUS * RADIUS)
{
matrix[x][y] = true;
loopUpTable[numberOfOnBits].x = x;
loopUpTable[numberOfOnBits].y = y;
++numberOfOnBits;
} // if
} // for
} // for
} // ()
Point choose()
{
int randomIndex = randomInt(numberOfBits);
return loopUpTable[randomIndex];
} // ()
位图仅用于解释逻辑。这是没有位图的代码:
const int RADIUS = 64;
const int MATRIX_SIZE = RADIUS * 2;
struct Point { int x; int y; };
Point lookupTable[MATRIX_SIZE * MATRIX_SIZE];
void init()
{
int numberOfOnBits = 0;
for (int x = 0 ; x < MATRIX_SIZE ; ++x)
{
for (int y = 0 ; y < MATRIX_SIZE ; ++y)
{
if (x * x + y * y < RADIUS * RADIUS)
{
loopUpTable[numberOfOnBits].x = x;
loopUpTable[numberOfOnBits].y = y;
++numberOfOnBits;
} // if
} // for
} // for
} // ()
Point choose()
{
int randomIndex = randomInt(numberOfBits);
return loopUpTable[randomIndex];
} // ()
其他回答
Java解决方案和分发示例(2000分)
public void getRandomPointInCircle() {
double t = 2 * Math.PI * Math.random();
double r = Math.sqrt(Math.random());
double x = r * Math.cos(t);
double y = r * Math.sin(t);
System.out.println(x);
System.out.println(y);
}
基于以前的解决方案https://stackoverflow.com/a/5838055/5224246从@sigfpe
我曾经用过这个方法: 这可能是完全未优化的(即它使用了一个点数组,所以它不能用于大圆圈),但它提供了足够的随机分布。如果你愿意,你可以跳过矩阵的创建,直接绘制。方法是随机化矩形中落在圆内的所有点。
bool[,] getMatrix(System.Drawing.Rectangle r) {
bool[,] matrix = new bool[r.Width, r.Height];
return matrix;
}
void fillMatrix(ref bool[,] matrix, Vector center) {
double radius = center.X;
Random r = new Random();
for (int y = 0; y < matrix.GetLength(0); y++) {
for (int x = 0; x < matrix.GetLength(1); x++)
{
double distance = (center - new Vector(x, y)).Length;
if (distance < radius) {
matrix[x, y] = r.NextDouble() > 0.5;
}
}
}
}
private void drawMatrix(Vector centerPoint, double radius, bool[,] matrix) {
var g = this.CreateGraphics();
Bitmap pixel = new Bitmap(1,1);
pixel.SetPixel(0, 0, Color.Black);
for (int y = 0; y < matrix.GetLength(0); y++)
{
for (int x = 0; x < matrix.GetLength(1); x++)
{
if (matrix[x, y]) {
g.DrawImage(pixel, new PointF((float)(centerPoint.X - radius + x), (float)(centerPoint.Y - radius + y)));
}
}
}
g.Dispose();
}
private void button1_Click(object sender, EventArgs e)
{
System.Drawing.Rectangle r = new System.Drawing.Rectangle(100,100,200,200);
double radius = r.Width / 2;
Vector center = new Vector(r.Left + radius, r.Top + radius);
Vector normalizedCenter = new Vector(radius, radius);
bool[,] matrix = getMatrix(r);
fillMatrix(ref matrix, normalizedCenter);
drawMatrix(center, radius, matrix);
}
首先我们生成一个cdf[x]
一点到圆心的距离小于x的概率。假设圆的半径为R。
显然,如果x = 0,那么cdf[0] = 0
显然,如果x是R,则cdf[R] = 1
显然,如果x = r,则cdf[r] = (r^2)/(r^2)
这是因为圆上的每个“小区域”都有相同的被选中的概率,所以概率与问题区域成比例。距离圆心x的面积是r^2
所以cdf[x] = x^2/R^2因为两者相互抵消了
我们有cdf[x]=x^2/R^2其中x从0到R
我们解出x
R^2 cdf[x] = x^2
x = R Sqrt[ cdf[x] ]
现在我们可以用一个从0到1的随机数来替换cdf
x = R Sqrt[ RandomReal[{0,1}] ]
最后
r = R Sqrt[ RandomReal[{0,1}] ];
theta = 360 deg * RandomReal[{0,1}];
{r,theta}
我们得到极坐标 {0.601168 R, 311.915°}
我认为在这种情况下,使用极坐标是一种使问题复杂化的方法,如果你在一个边长为2R的正方形中随机选择点,然后选择点(x,y)使x^2+y^2<=R^2,这将会容易得多。
这可能会帮助那些对选择速度算法感兴趣的人;最快的方法是(可能?)拒绝抽样。
只需在单位正方形内生成一个点,并拒绝它,直到它在圆内。如(伪代码),
def sample(r=1):
while True:
x = random(-1, 1)
y = random(-1, 1)
if x*x + y*y <= 1:
return (x, y) * r
虽然有时它可能运行不止一次或两次(而且它不是常量时间,也不适合并行执行),但它要快得多,因为它不使用像sin或cos这样复杂的公式。