以下哪一种技术是整数除2的最佳选择,为什么?
技巧1:
x = x >> 1;
技巧2:
x = x / 2;
这里x是整数。
以下哪一种技术是整数除2的最佳选择,为什么?
技巧1:
x = x >> 1;
技巧2:
x = x / 2;
这里x是整数。
当前回答
只是加了一个注释
在一些基于vm的语言中,x *= 0.5通常会更快——尤其是actionscript,因为变量不需要被检查是否除以0。
其他回答
使用除法(/),假设这样更清楚。编译器将相应地进行优化。
我同意其他答案,你应该支持x / 2,因为它的意图更清楚,编译器应该为你优化它。
然而,选择x / 2而不是x >> 1的另一个原因是,如果x是一个有符号int并且是负的,那么>>的行为是依赖于实现的。
ISO C99标准第6.5.7节第5项:
E1 >> E2的结果是E1位右移E2位位置。如果E1 无符号类型,或者E1有符号类型且值为非负值, 结果值为E1 /商的积分部分 2 e2。如果E1具有符号类型和负值,则结果值为 是由实现定义的。
查看编译器的输出来帮助您做出决定。我在x86-64上使用 gcc (gcc) 4.2.1 20070719 [FreeBSD]
也可以在godbolt上看到编译器的在线输出。
What you see is the compiler does use a sarl (arithmetic right-shift) instruction in both cases, so it does recognize the similarity between the two expressions. If you use the divide, the compiler also needs to adjust for negative numbers. To do that it shifts the sign bit down to the lowest order bit, and adds that to the result. This fixes the off-by-one issue when shifting negative numbers, compared to what a divide would do. Since the divide case does 2 shifts, while the explicit shift case only does one, we can now explain some of the performance differences measured by other answers here.
C代码与汇编输出:
对于除法,你的输入是
int div2signed(int a) {
return a / 2;
}
这个编译成
movl %edi, %eax
shrl $31, %eax # (unsigned)x >> 31
addl %edi, %eax # tmp = x + (x<0)
sarl %eax # (x + 0 or 1) >> 1 arithmetic right shift
ret
shift也是一样
int shr2signed(int a) {
return a >> 1;
}
输出:
sarl %edi
movl %edi, %eax
ret
其他isa即使不能做得更好,也能同样有效地做到这一点。例如GCC For AArch64使用:
add w0, w0, w0, lsr 31 // x += (unsigned)x>>31
asr w0, w0, 1 // x >>= 1
ret
我想说有几件事需要考虑。
Bitshift should be faster, as no special computation is really needed to shift the bits, however as pointed out, there are potential issues with negative numbers. If you are ensured to have positive numbers, and are looking for speed then I would recommend bitshift. The division operator is very easy for humans to read. So if you are looking for code readability, you could use this. Note that the field of compiler optimization has come a long way, so making code easy to read and understand is good practice. Depending on the underlying hardware, operations may have different speeds. Amdal's law is to make the common case fast. So you may have hardware that can perform different operations faster than others. For example, multiplying by 0.5 may be faster than dividing by 2. (Granted you may need to take the floor of the multiplication if you wish to enforce integer division).
如果您追求的是纯粹的性能,我建议您创建一些可以执行数百万次操作的测试。对执行进行多次采样(您的样本量),以确定哪一个在统计上最适合您的操作系统/硬件/编译器/代码。
在性能方面。CPU的移位运算比除法运算快得多。 所以除以2或乘以2等都可以从移位运算中获益。
至于外观和感觉。作为工程师,我们什么时候变得如此依赖化妆品,连漂亮的女士都不用!:)