以下哪一种技术是整数除2的最佳选择,为什么?
技巧1:
x = x >> 1;
技巧2:
x = x / 2;
这里x是整数。
以下哪一种技术是整数除2的最佳选择,为什么?
技巧1:
x = x >> 1;
技巧2:
x = x / 2;
这里x是整数。
当前回答
我们有很多理由支持使用x = x / 2;以下是一些例子:
it expresses your intent more clearly (assuming you're not dealing with bit twiddling register bits or something) the compiler will reduce this to a shift operation anyway even if the compiler didn't reduce it and chose a slower operation than the shift, the likelihood that this ends up affecting your program's performance in a measurable way is itself vanishingly small (and if it does affect it measurably, then you have an actual reason to use a shift) if the division is going to be part of a larger expression, you're more likely to get the precedence right if you use the division operator: x = x / 2 + 5; x = x >> 1 + 5; // not the same as above signed arithmetic might complicate things even more than the precedence problem mentioned above to reiterate - the compiler will already do this for you anyway. In fact, it'll convert division by a constant to a series of shifts, adds, and multiplies for all sorts of numbers, not just powers of two. See this question for links to even more information about this.
简而言之,当你真正想要进行乘法或除法运算时,编写移位代码并没有什么好处,除了可能会增加引入错误的可能性。自从编译器不够聪明到在适当的时候优化这类事情到移位以来,已经过去了。
其他回答
x / 2更清晰,x >> 1快不了多少(根据一个微基准测试,对于Java JVM快30%左右)。正如其他人所注意到的,对于负数,舍入略有不同,所以当您想处理负数时必须考虑这一点。一些编译器可能会自动将x / 2转换为x >> 1,如果他们知道这个数字不可能是负数(即使我无法验证这一点)。
即使x / 2可能不使用(慢)除法CPU指令,因为一些捷径是可能的,但它仍然比x >> 1慢。
(This is a C / C++ question, other programming languages have more operators. For Java there is also the unsigned right shift, x >>> 1, which is again different. It allows to correctly calculate the mean (average) value of two values, so that (a + b) >>> 1 will return the mean value even for very large values of a and b. This is required for example for binary search if the array indices can get very large. There was a bug in many versions of binary search, because they used (a + b) / 2 to calculate the average. This doesn't work correctly. The correct solution is to use (a + b) >>> 1 instead.)
显然,如果你是在为下一个阅读你的代码的人写代码,那么你应该追求“x/2”的清晰度。
然而,如果速度是你的目标,那就两种方法都试一试,把握好时间。几个月前,我做了一个位图卷积例程,它涉及到在一个整数数组中步进,并将每个元素除以2。我做了各种各样的事情来优化它,包括用“x>>1”代替“x/2”的老技巧。
当我计算这两种方式时,我惊奇地发现x/2比x>>1快
这是使用Microsoft VS2008 c++并打开默认优化。
查看编译器的输出来帮助您做出决定。我在x86-64上使用 gcc (gcc) 4.2.1 20070719 [FreeBSD]
也可以在godbolt上看到编译器的在线输出。
What you see is the compiler does use a sarl (arithmetic right-shift) instruction in both cases, so it does recognize the similarity between the two expressions. If you use the divide, the compiler also needs to adjust for negative numbers. To do that it shifts the sign bit down to the lowest order bit, and adds that to the result. This fixes the off-by-one issue when shifting negative numbers, compared to what a divide would do. Since the divide case does 2 shifts, while the explicit shift case only does one, we can now explain some of the performance differences measured by other answers here.
C代码与汇编输出:
对于除法,你的输入是
int div2signed(int a) {
return a / 2;
}
这个编译成
movl %edi, %eax
shrl $31, %eax # (unsigned)x >> 31
addl %edi, %eax # tmp = x + (x<0)
sarl %eax # (x + 0 or 1) >> 1 arithmetic right shift
ret
shift也是一样
int shr2signed(int a) {
return a >> 1;
}
输出:
sarl %edi
movl %edi, %eax
ret
其他isa即使不能做得更好,也能同样有效地做到这一点。例如GCC For AArch64使用:
add w0, w0, w0, lsr 31 // x += (unsigned)x>>31
asr w0, w0, 1 // x >>= 1
ret
第一个看起来像除法吗?不。如果你想除法,用x / 2。如果可能的话,编译器可以优化它使用位移位(它被称为强度减少),这使得它成为一个无用的微优化,如果你自己做它。
Knuth说:
过早的优化是万恶之源。
所以我建议用x /= 2;
这样代码很容易理解,而且我认为这种形式的操作优化,对处理器来说不会有太大的区别。