在Tensorflow中训练一个模型后:
如何拯救训练过的模型? 您以后如何恢复这个保存的模型?
在Tensorflow中训练一个模型后:
如何拯救训练过的模型? 您以后如何恢复这个保存的模型?
当前回答
在TensorFlow 0.11.0RC1版本中,你可以通过调用tf.train直接保存和恢复你的模型。Export_meta_graph和tf.train。根据https://www.tensorflow.org/programmers_guide/meta_graph的Import_meta_graph。
保存模型
w1 = tf.Variable(tf.truncated_normal(shape=[10]), name='w1')
w2 = tf.Variable(tf.truncated_normal(shape=[20]), name='w2')
tf.add_to_collection('vars', w1)
tf.add_to_collection('vars', w2)
saver = tf.train.Saver()
sess = tf.Session()
sess.run(tf.global_variables_initializer())
saver.save(sess, 'my-model')
# `save` method will call `export_meta_graph` implicitly.
# you will get saved graph files:my-model.meta
恢复模型
sess = tf.Session()
new_saver = tf.train.import_meta_graph('my-model.meta')
new_saver.restore(sess, tf.train.latest_checkpoint('./'))
all_vars = tf.get_collection('vars')
for v in all_vars:
v_ = sess.run(v)
print(v_)
其他回答
你也可以在TensorFlow/skflow中查看例子,它提供了保存和恢复方法,可以帮助你轻松地管理模型。它具有一些参数,您还可以控制备份模型的频率。
最简单的方法是使用keras api,在线保存模型和一行加载模型
from keras.models import load_model
my_model.save('my_model.h5') # creates a HDF5 file 'my_model.h5'
del my_model # deletes the existing model
my_model = load_model('my_model.h5') # returns a compiled model identical to the previous one
tensorflow - 2.0
这很简单。
import tensorflow as tf
SAVE
model.save("model_name")
恢复
model = tf.keras.models.load_model('model_name')
你也可以用更简单的方法。
步骤1:初始化所有变量
W1 = tf.Variable(tf.truncated_normal([6, 6, 1, K], stddev=0.1), name="W1")
B1 = tf.Variable(tf.constant(0.1, tf.float32, [K]), name="B1")
Similarly, W2, B2, W3, .....
步骤2:在模型Saver中保存会话并保存它
model_saver = tf.train.Saver()
# Train the model and save it in the end
model_saver.save(session, "saved_models/CNN_New.ckpt")
步骤3:恢复模型
with tf.Session(graph=graph_cnn) as session:
model_saver.restore(session, "saved_models/CNN_New.ckpt")
print("Model restored.")
print('Initialized')
步骤4:检查变量
W1 = session.run(W1)
print(W1)
在不同的python实例中运行时,使用
with tf.Session() as sess:
# Restore latest checkpoint
saver.restore(sess, tf.train.latest_checkpoint('saved_model/.'))
# Initalize the variables
sess.run(tf.global_variables_initializer())
# Get default graph (supply your custom graph if you have one)
graph = tf.get_default_graph()
# It will give tensor object
W1 = graph.get_tensor_by_name('W1:0')
# To get the value (numpy array)
W1_value = session.run(W1)
模型有两个部分,模型定义,由Supervisor保存为图。模型目录中的PBTXT和张量的数值,保存到检查点文件,如model.ckpt-1003418。
可以使用tf恢复模型定义。import_graph_def,并且使用Saver恢复权重。
然而,Saver使用特殊的集合保存附加到模型Graph的变量列表,并且这个集合没有使用import_graph_def初始化,所以您目前不能同时使用这两者(这在我们的路线图中进行修复)。现在,您必须使用Ryan Sepassi的方法——手动构造具有相同节点名称的图,并使用Saver将权重加载到其中。
(或者,您可以通过使用import_graph_def,手动创建变量和使用tf.add_to_collection(tf.GraphKeys. collection)来破解它。变量,变量)为每个变量,然后使用Saver)