在Tensorflow中训练一个模型后:
如何拯救训练过的模型? 您以后如何恢复这个保存的模型?
在Tensorflow中训练一个模型后:
如何拯救训练过的模型? 您以后如何恢复这个保存的模型?
当前回答
我的环境:Python 3.6, Tensorflow 1.3.0
虽然有很多解决方案,但大多数都是基于tf.train.Saver。当我们加载由Saver保存的.ckpt文件时,我们必须要么重新定义张量流网络,要么使用一些奇怪且难以记住的名称,例如:“placehold_0:0”,“密集/亚当/重量:0”。这里我推荐使用tf。saved_model,下面给出的一个最简单的例子,你可以从为TensorFlow模型服务中学到更多:
保存模型:
import tensorflow as tf
# define the tensorflow network and do some trains
x = tf.placeholder("float", name="x")
w = tf.Variable(2.0, name="w")
b = tf.Variable(0.0, name="bias")
h = tf.multiply(x, w)
y = tf.add(h, b, name="y")
sess = tf.Session()
sess.run(tf.global_variables_initializer())
# save the model
export_path = './savedmodel'
builder = tf.saved_model.builder.SavedModelBuilder(export_path)
tensor_info_x = tf.saved_model.utils.build_tensor_info(x)
tensor_info_y = tf.saved_model.utils.build_tensor_info(y)
prediction_signature = (
tf.saved_model.signature_def_utils.build_signature_def(
inputs={'x_input': tensor_info_x},
outputs={'y_output': tensor_info_y},
method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME))
builder.add_meta_graph_and_variables(
sess, [tf.saved_model.tag_constants.SERVING],
signature_def_map={
tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
prediction_signature
},
)
builder.save()
加载模型:
import tensorflow as tf
sess=tf.Session()
signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
input_key = 'x_input'
output_key = 'y_output'
export_path = './savedmodel'
meta_graph_def = tf.saved_model.loader.load(
sess,
[tf.saved_model.tag_constants.SERVING],
export_path)
signature = meta_graph_def.signature_def
x_tensor_name = signature[signature_key].inputs[input_key].name
y_tensor_name = signature[signature_key].outputs[output_key].name
x = sess.graph.get_tensor_by_name(x_tensor_name)
y = sess.graph.get_tensor_by_name(y_tensor_name)
y_out = sess.run(y, {x: 3.0})
其他回答
我在版本:
tensorflow (1.13.1)
tensorflow-gpu (1.13.1)
简单的方法是
拯救策略:
model.save("model.h5")
恢复:
model = tf.keras.models.load_model("model.h5")
对于TensorFlow版本< 0.11.0RC1:
保存的检查点包含模型中的变量值,而不是模型/图本身,这意味着当您恢复检查点时,图应该是相同的。
这里有一个线性回归的例子,其中有一个训练循环,保存变量检查点,还有一个评估部分,将恢复之前运行中保存的变量并计算预测。当然,如果你愿意,你也可以恢复变量并继续训练。
x = tf.placeholder(tf.float32)
y = tf.placeholder(tf.float32)
w = tf.Variable(tf.zeros([1, 1], dtype=tf.float32))
b = tf.Variable(tf.ones([1, 1], dtype=tf.float32))
y_hat = tf.add(b, tf.matmul(x, w))
...more setup for optimization and what not...
saver = tf.train.Saver() # defaults to saving all variables - in this case w and b
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
if FLAGS.train:
for i in xrange(FLAGS.training_steps):
...training loop...
if (i + 1) % FLAGS.checkpoint_steps == 0:
saver.save(sess, FLAGS.checkpoint_dir + 'model.ckpt',
global_step=i+1)
else:
# Here's where you're restoring the variables w and b.
# Note that the graph is exactly as it was when the variables were
# saved in a prior training run.
ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
else:
...no checkpoint found...
# Now you can run the model to get predictions
batch_x = ...load some data...
predictions = sess.run(y_hat, feed_dict={x: batch_x})
下面是变量文档,涵盖了保存和恢复。这是保存程序的文档。
您可以保存网络中的变量使用
saver = tf.train.Saver()
saver.save(sess, 'path of save/fileName.ckpt')
要恢复网络以供以后或在另一个脚本中重用,请使用:
saver = tf.train.Saver()
saver.restore(sess, tf.train.latest_checkpoint('path of save/')
sess.run(....)
重要的几点:
第一次运行和以后运行之间的Sess必须相同(一致的结构)。 储蓄者。还原需要保存文件的文件夹路径,而不是单个文件路径。
你也可以在TensorFlow/skflow中查看例子,它提供了保存和恢复方法,可以帮助你轻松地管理模型。它具有一些参数,您还可以控制备份模型的频率。
下面是我对这两种基本情况的简单解决方案,这两种情况的不同之处在于您是想从文件加载图形还是在运行时构建它。
这个答案适用于Tensorflow 0.12+(包括1.0)。
在代码中重建图形
储蓄
graph = ... # build the graph
saver = tf.train.Saver() # create the saver after the graph
with ... as sess: # your session object
saver.save(sess, 'my-model')
加载
graph = ... # build the graph
saver = tf.train.Saver() # create the saver after the graph
with ... as sess: # your session object
saver.restore(sess, tf.train.latest_checkpoint('./'))
# now you can use the graph, continue training or whatever
还从文件中加载图形
当使用这种技术时,确保所有的层/变量都显式地设置了唯一的名称。否则Tensorflow将使名称本身是唯一的,因此它们将不同于存储在文件中的名称。在前一种技术中,这不是问题,因为名称在加载和保存时都以相同的方式“损坏”。
储蓄
graph = ... # build the graph
for op in [ ... ]: # operators you want to use after restoring the model
tf.add_to_collection('ops_to_restore', op)
saver = tf.train.Saver() # create the saver after the graph
with ... as sess: # your session object
saver.save(sess, 'my-model')
加载
with ... as sess: # your session object
saver = tf.train.import_meta_graph('my-model.meta')
saver.restore(sess, tf.train.latest_checkpoint('./'))
ops = tf.get_collection('ops_to_restore') # here are your operators in the same order in which you saved them to the collection