在Tensorflow中训练一个模型后:

如何拯救训练过的模型? 您以后如何恢复这个保存的模型?


当前回答

最简单的方法是使用keras api,在线保存模型和一行加载模型

from keras.models import load_model

my_model.save('my_model.h5')  # creates a HDF5 file 'my_model.h5'

del my_model  # deletes the existing model


my_model = load_model('my_model.h5') # returns a compiled model identical to the previous one

其他回答

你也可以在TensorFlow/skflow中查看例子,它提供了保存和恢复方法,可以帮助你轻松地管理模型。它具有一些参数,您还可以控制备份模型的频率。

你可以使用Tensorflow中的saver对象来保存你训练过的模型。该对象提供保存和恢复模型的方法。

在TensorFlow中保存一个训练好的模型:

tf.train.Saver.save(sess, save_path, global_step=None, latest_filename=None,
                    meta_graph_suffix='meta', write_meta_graph=True,
                    write_state=True, strip_default_attrs=False,
                    save_debug_info=False)

在TensorFlow中恢复已保存的模型:

tf.train.Saver.restore(sess, save_path, latest_filename=None,
                       meta_graph_suffix='meta', clear_devices=False,
                       import_scope=None)

正如Yaroslav所说,您可以通过导入图、手动创建变量,然后使用Saver来从graph_def和检查点进行恢复。

我实现这个是为了我个人使用,所以我想在这里分享一下代码。

链接:https://gist.github.com/nikitakit/6ef3b72be67b86cb7868

(当然,这是一种hack,并且不能保证以这种方式保存的模型在TensorFlow的未来版本中仍然是可读的。)

如第6255期所述:

use '**./**model_name.ckpt'
saver.restore(sess,'./my_model_final.ckpt')

而不是

saver.restore('my_model_final.ckpt')

根据新的Tensorflow版本,tf.train.Checkpoint是保存和恢复模型的最佳方式:

Checkpoint.save and Checkpoint.restore write and read object-based checkpoints, in contrast to tf.train.Saver which writes and reads variable.name based checkpoints. Object-based checkpointing saves a graph of dependencies between Python objects (Layers, Optimizers, Variables, etc.) with named edges, and this graph is used to match variables when restoring a checkpoint. It can be more robust to changes in the Python program, and helps to support restore-on-create for variables when executing eagerly. Prefer tf.train.Checkpoint over tf.train.Saver for new code.

这里有一个例子:

import tensorflow as tf
import os

tf.enable_eager_execution()

checkpoint_directory = "/tmp/training_checkpoints"
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")

checkpoint = tf.train.Checkpoint(optimizer=optimizer, model=model)
status = checkpoint.restore(tf.train.latest_checkpoint(checkpoint_directory))
for _ in range(num_training_steps):
  optimizer.minimize( ... )  # Variables will be restored on creation.
status.assert_consumed()  # Optional sanity checks.
checkpoint.save(file_prefix=checkpoint_prefix)

这里有更多信息和示例。