在Tensorflow中训练一个模型后:
如何拯救训练过的模型? 您以后如何恢复这个保存的模型?
在Tensorflow中训练一个模型后:
如何拯救训练过的模型? 您以后如何恢复这个保存的模型?
当前回答
最简单的方法是使用keras api,在线保存模型和一行加载模型
from keras.models import load_model
my_model.save('my_model.h5') # creates a HDF5 file 'my_model.h5'
del my_model # deletes the existing model
my_model = load_model('my_model.h5') # returns a compiled model identical to the previous one
其他回答
无论你想把模型保存在哪里,
self.saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
...
self.saver.save(sess, filename)
确保你所有的任务。变量有名称,因为您可能希望稍后使用它们的名称来恢复它们。 在你想预测的地方,
saver = tf.train.import_meta_graph(filename)
name = 'name given when you saved the file'
with tf.Session() as sess:
saver.restore(sess, name)
print(sess.run('W1:0')) #example to retrieve by variable name
确保该保护程序在相应的会话中运行。 请记住,如果使用tf.train.latest_checkpoint('./'),那么将只使用最新的检查点。
如果您使用tf.train.MonitoredTrainingSession作为默认会话,则不需要添加额外的代码来执行保存/恢复操作。只需将检查点目录名称传递给MonitoredTrainingSession的构造函数,它将使用会话挂钩来处理这些。
你也可以用更简单的方法。
步骤1:初始化所有变量
W1 = tf.Variable(tf.truncated_normal([6, 6, 1, K], stddev=0.1), name="W1")
B1 = tf.Variable(tf.constant(0.1, tf.float32, [K]), name="B1")
Similarly, W2, B2, W3, .....
步骤2:在模型Saver中保存会话并保存它
model_saver = tf.train.Saver()
# Train the model and save it in the end
model_saver.save(session, "saved_models/CNN_New.ckpt")
步骤3:恢复模型
with tf.Session(graph=graph_cnn) as session:
model_saver.restore(session, "saved_models/CNN_New.ckpt")
print("Model restored.")
print('Initialized')
步骤4:检查变量
W1 = session.run(W1)
print(W1)
在不同的python实例中运行时,使用
with tf.Session() as sess:
# Restore latest checkpoint
saver.restore(sess, tf.train.latest_checkpoint('saved_model/.'))
# Initalize the variables
sess.run(tf.global_variables_initializer())
# Get default graph (supply your custom graph if you have one)
graph = tf.get_default_graph()
# It will give tensor object
W1 = graph.get_tensor_by_name('W1:0')
# To get the value (numpy array)
W1_value = session.run(W1)
你可以使用Tensorflow中的saver对象来保存你训练过的模型。该对象提供保存和恢复模型的方法。
在TensorFlow中保存一个训练好的模型:
tf.train.Saver.save(sess, save_path, global_step=None, latest_filename=None,
meta_graph_suffix='meta', write_meta_graph=True,
write_state=True, strip_default_attrs=False,
save_debug_info=False)
在TensorFlow中恢复已保存的模型:
tf.train.Saver.restore(sess, save_path, latest_filename=None,
meta_graph_suffix='meta', clear_devices=False,
import_scope=None)
您可以保存网络中的变量使用
saver = tf.train.Saver()
saver.save(sess, 'path of save/fileName.ckpt')
要恢复网络以供以后或在另一个脚本中重用,请使用:
saver = tf.train.Saver()
saver.restore(sess, tf.train.latest_checkpoint('path of save/')
sess.run(....)
重要的几点:
第一次运行和以后运行之间的Sess必须相同(一致的结构)。 储蓄者。还原需要保存文件的文件夹路径,而不是单个文件路径。