在Tensorflow中训练一个模型后:
如何拯救训练过的模型? 您以后如何恢复这个保存的模型?
在Tensorflow中训练一个模型后:
如何拯救训练过的模型? 您以后如何恢复这个保存的模型?
当前回答
Tensorflow 2.6:它现在变得更简单了,你可以用两种格式保存模型
Saved_model (tf服务兼容) H5或HDF5
以两种格式保存模型:
from tensorflow.keras import Model
inputs = tf.keras.Input(shape=(224,224,3))
y = tf.keras.layers.Conv2D(24, 3, activation='relu', input_shape=input_shape[1:])(inputs)
outputs = tf.keras.layers.Dense(5, activation=tf.nn.softmax)(y)
model = tf.keras.Model(inputs=inputs, outputs=outputs)
model.save("saved_model/my_model") #To Save in Saved_model format
model.save("my_model.h5") #To save model in H5 or HDF5 format
以两种格式加载模型
import tensorflow as tf
h5_model = tf.keras.models.load_model("my_model.h5") # loading model in h5 format
h5_model.summary()
saved_m = tf.keras.models.load_model("saved_model/my_model") #loading model in saved_model format
saved_m.summary()
其他回答
在新版本的tensorflow 2.0中,保存/加载模型的过程要容易得多。因为Keras API的实现,一个TensorFlow的高级API。
保存一个模型: 请查阅相关文档以作参考: https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/models/save_model
tf.keras.models.save_model(model_name, filepath, save_format)
加载一个模型:
https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/models/load_model
model = tf.keras.models.load_model(filepath)
在TensorFlow 0.11.0RC1版本中,你可以通过调用tf.train直接保存和恢复你的模型。Export_meta_graph和tf.train。根据https://www.tensorflow.org/programmers_guide/meta_graph的Import_meta_graph。
保存模型
w1 = tf.Variable(tf.truncated_normal(shape=[10]), name='w1')
w2 = tf.Variable(tf.truncated_normal(shape=[20]), name='w2')
tf.add_to_collection('vars', w1)
tf.add_to_collection('vars', w2)
saver = tf.train.Saver()
sess = tf.Session()
sess.run(tf.global_variables_initializer())
saver.save(sess, 'my-model')
# `save` method will call `export_meta_graph` implicitly.
# you will get saved graph files:my-model.meta
恢复模型
sess = tf.Session()
new_saver = tf.train.import_meta_graph('my-model.meta')
new_saver.restore(sess, tf.train.latest_checkpoint('./'))
all_vars = tf.get_collection('vars')
for v in all_vars:
v_ = sess.run(v)
print(v_)
我的环境:Python 3.6, Tensorflow 1.3.0
虽然有很多解决方案,但大多数都是基于tf.train.Saver。当我们加载由Saver保存的.ckpt文件时,我们必须要么重新定义张量流网络,要么使用一些奇怪且难以记住的名称,例如:“placehold_0:0”,“密集/亚当/重量:0”。这里我推荐使用tf。saved_model,下面给出的一个最简单的例子,你可以从为TensorFlow模型服务中学到更多:
保存模型:
import tensorflow as tf
# define the tensorflow network and do some trains
x = tf.placeholder("float", name="x")
w = tf.Variable(2.0, name="w")
b = tf.Variable(0.0, name="bias")
h = tf.multiply(x, w)
y = tf.add(h, b, name="y")
sess = tf.Session()
sess.run(tf.global_variables_initializer())
# save the model
export_path = './savedmodel'
builder = tf.saved_model.builder.SavedModelBuilder(export_path)
tensor_info_x = tf.saved_model.utils.build_tensor_info(x)
tensor_info_y = tf.saved_model.utils.build_tensor_info(y)
prediction_signature = (
tf.saved_model.signature_def_utils.build_signature_def(
inputs={'x_input': tensor_info_x},
outputs={'y_output': tensor_info_y},
method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME))
builder.add_meta_graph_and_variables(
sess, [tf.saved_model.tag_constants.SERVING],
signature_def_map={
tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
prediction_signature
},
)
builder.save()
加载模型:
import tensorflow as tf
sess=tf.Session()
signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
input_key = 'x_input'
output_key = 'y_output'
export_path = './savedmodel'
meta_graph_def = tf.saved_model.loader.load(
sess,
[tf.saved_model.tag_constants.SERVING],
export_path)
signature = meta_graph_def.signature_def
x_tensor_name = signature[signature_key].inputs[input_key].name
y_tensor_name = signature[signature_key].outputs[output_key].name
x = sess.graph.get_tensor_by_name(x_tensor_name)
y = sess.graph.get_tensor_by_name(y_tensor_name)
y_out = sess.run(y, {x: 3.0})
如果它是一个内部保存的模型,您只需为所有变量指定一个恢复器为
restorer = tf.train.Saver(tf.all_variables())
并使用它来恢复当前会话中的变量:
restorer.restore(self._sess, model_file)
对于外部模型,您需要指定从它的变量名到您的变量名的映射。您可以使用该命令查看模型变量名
python /path/to/tensorflow/tensorflow/python/tools/inspect_checkpoint.py --file_name=/path/to/pretrained_model/model.ckpt
inspect_checkpoint.py脚本可以在`。tensorflow源码的/tensorflow/python/tools文件夹。
为了指定映射,你可以使用我的Tensorflow-Worklab,它包含一组类和脚本来训练和再训练不同的模型。它包括一个再训练ResNet模型的例子,位于这里
在大多数情况下,使用tf.train.Saver从磁盘保存和恢复是最好的选择:
... # build your model
saver = tf.train.Saver()
with tf.Session() as sess:
... # train the model
saver.save(sess, "/tmp/my_great_model")
with tf.Session() as sess:
saver.restore(sess, "/tmp/my_great_model")
... # use the model
您还可以保存/恢复图结构本身(详细信息请参阅MetaGraph文档)。默认情况下,保存程序将图形结构保存到.meta文件中。您可以调用import_meta_graph()来恢复它。它恢复图形结构并返回一个你可以用来恢复模型状态的保护程序:
saver = tf.train.import_meta_graph("/tmp/my_great_model.meta")
with tf.Session() as sess:
saver.restore(sess, "/tmp/my_great_model")
... # use the model
然而,在某些情况下,您需要更快的方法。例如,如果您实现了早期停止,那么您希望在训练期间每次模型改进时都保存检查点(在验证集上测量),然后如果一段时间内没有进展,则希望回滚到最佳模型。如果每次模型改进时都将其保存到磁盘,则会极大地降低训练速度。诀窍是将变量状态保存到内存中,然后稍后恢复它们:
... # build your model
# get a handle on the graph nodes we need to save/restore the model
graph = tf.get_default_graph()
gvars = graph.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
assign_ops = [graph.get_operation_by_name(v.op.name + "/Assign") for v in gvars]
init_values = [assign_op.inputs[1] for assign_op in assign_ops]
with tf.Session() as sess:
... # train the model
# when needed, save the model state to memory
gvars_state = sess.run(gvars)
# when needed, restore the model state
feed_dict = {init_value: val
for init_value, val in zip(init_values, gvars_state)}
sess.run(assign_ops, feed_dict=feed_dict)
A quick explanation: when you create a variable X, TensorFlow automatically creates an assignment operation X/Assign to set the variable's initial value. Instead of creating placeholders and extra assignment ops (which would just make the graph messy), we just use these existing assignment ops. The first input of each assignment op is a reference to the variable it is supposed to initialize, and the second input (assign_op.inputs[1]) is the initial value. So in order to set any value we want (instead of the initial value), we need to use a feed_dict and replace the initial value. Yes, TensorFlow lets you feed a value for any op, not just for placeholders, so this works fine.