在Tensorflow中训练一个模型后:
如何拯救训练过的模型? 您以后如何恢复这个保存的模型?
在Tensorflow中训练一个模型后:
如何拯救训练过的模型? 您以后如何恢复这个保存的模型?
当前回答
在新版本的tensorflow 2.0中,保存/加载模型的过程要容易得多。因为Keras API的实现,一个TensorFlow的高级API。
保存一个模型: 请查阅相关文档以作参考: https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/models/save_model
tf.keras.models.save_model(model_name, filepath, save_format)
加载一个模型:
https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/models/load_model
model = tf.keras.models.load_model(filepath)
其他回答
正如Yaroslav所说,您可以通过导入图、手动创建变量,然后使用Saver来从graph_def和检查点进行恢复。
我实现这个是为了我个人使用,所以我想在这里分享一下代码。
链接:https://gist.github.com/nikitakit/6ef3b72be67b86cb7868
(当然,这是一种hack,并且不能保证以这种方式保存的模型在TensorFlow的未来版本中仍然是可读的。)
对于张量流2.0,它非常简单
#保存模型 model.save(“path_to_my_model.h5”)
恢复:
new_model = tensorflow.keras.models.load_model('path_to_my_model.h5')
这里所有的答案都很棒,但我想补充两点。
首先,详细说明@user7505159的答案,“。添加到要恢复的文件名的开头可能很重要。
例如,您可以保存没有“的图形。/"在文件名中如下所示:
# Some graph defined up here with specific names
saver = tf.train.Saver()
save_file = 'model.ckpt'
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
saver.save(sess, save_file)
但是为了恢复图形,您可能需要在前面加上一个"。/"到file_name:
# Same graph defined up here
saver = tf.train.Saver()
save_file = './' + 'model.ckpt' # String addition used for emphasis
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
saver.restore(sess, save_file)
你并不总是需要“。/”,但是它会根据你的环境和TensorFlow版本而导致问题。
它还想提到sess.run(tf.global_variables_initializer())在恢复会话之前可能很重要。
如果在尝试恢复保存的会话时收到关于未初始化变量的错误,请确保在保存程序之前包含sess.run(tf.global_variables_initializer())。恢复(sess, save_file)行。这样你就不用头疼了。
你也可以在TensorFlow/skflow中查看例子,它提供了保存和恢复方法,可以帮助你轻松地管理模型。它具有一些参数,您还可以控制备份模型的频率。
在新版本的tensorflow 2.0中,保存/加载模型的过程要容易得多。因为Keras API的实现,一个TensorFlow的高级API。
保存一个模型: 请查阅相关文档以作参考: https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/models/save_model
tf.keras.models.save_model(model_name, filepath, save_format)
加载一个模型:
https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/models/load_model
model = tf.keras.models.load_model(filepath)