在Tensorflow中训练一个模型后:

如何拯救训练过的模型? 您以后如何恢复这个保存的模型?


当前回答

对于张量流2.0,它非常简单

#保存模型 model.save(“path_to_my_model.h5”)

恢复:

new_model = tensorflow.keras.models.load_model('path_to_my_model.h5')

其他回答

如果它是一个内部保存的模型,您只需为所有变量指定一个恢复器为

restorer = tf.train.Saver(tf.all_variables())

并使用它来恢复当前会话中的变量:

restorer.restore(self._sess, model_file)

对于外部模型,您需要指定从它的变量名到您的变量名的映射。您可以使用该命令查看模型变量名

python /path/to/tensorflow/tensorflow/python/tools/inspect_checkpoint.py --file_name=/path/to/pretrained_model/model.ckpt

inspect_checkpoint.py脚本可以在`。tensorflow源码的/tensorflow/python/tools文件夹。

为了指定映射,你可以使用我的Tensorflow-Worklab,它包含一组类和脚本来训练和再训练不同的模型。它包括一个再训练ResNet模型的例子,位于这里

你可以使用Tensorflow中的saver对象来保存你训练过的模型。该对象提供保存和恢复模型的方法。

在TensorFlow中保存一个训练好的模型:

tf.train.Saver.save(sess, save_path, global_step=None, latest_filename=None,
                    meta_graph_suffix='meta', write_meta_graph=True,
                    write_state=True, strip_default_attrs=False,
                    save_debug_info=False)

在TensorFlow中恢复已保存的模型:

tf.train.Saver.restore(sess, save_path, latest_filename=None,
                       meta_graph_suffix='meta', clear_devices=False,
                       import_scope=None)

使用tf.train.Saver保存模型。记住,如果想要减小模型大小,就需要指定var_list。val_list可以是:

特遣部队。trainable_variables或 tf.global_variables。

在新版本的tensorflow 2.0中,保存/加载模型的过程要容易得多。因为Keras API的实现,一个TensorFlow的高级API。

保存一个模型: 请查阅相关文档以作参考: https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/models/save_model

tf.keras.models.save_model(model_name, filepath, save_format)

加载一个模型:

https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/models/load_model

model = tf.keras.models.load_model(filepath)

tensorflow - 2.0

这很简单。

import tensorflow as tf

SAVE

model.save("model_name")

恢复

model = tf.keras.models.load_model('model_name')