在Tensorflow中训练一个模型后:

如何拯救训练过的模型? 您以后如何恢复这个保存的模型?


当前回答

无论你想把模型保存在哪里,

self.saver = tf.train.Saver()
with tf.Session() as sess:
            sess.run(tf.global_variables_initializer())
            ...
            self.saver.save(sess, filename)

确保你所有的任务。变量有名称,因为您可能希望稍后使用它们的名称来恢复它们。 在你想预测的地方,

saver = tf.train.import_meta_graph(filename)
name = 'name given when you saved the file' 
with tf.Session() as sess:
      saver.restore(sess, name)
      print(sess.run('W1:0')) #example to retrieve by variable name

确保该保护程序在相应的会话中运行。 请记住,如果使用tf.train.latest_checkpoint('./'),那么将只使用最新的检查点。

其他回答

在@Vishnuvardhan Janapati的回答之后,这里是另一种在TensorFlow 2.0.0下保存和重载自定义层/度量/损失模型的方法

import tensorflow as tf
from tensorflow.keras.layers import Layer
from tensorflow.keras.utils.generic_utils import get_custom_objects

# custom loss (for example)  
def custom_loss(y_true,y_pred):
  return tf.reduce_mean(y_true - y_pred)
get_custom_objects().update({'custom_loss': custom_loss}) 

# custom loss (for example) 
class CustomLayer(Layer):
  def __init__(self, ...):
      ...
  # define custom layer and all necessary custom operations inside custom layer

get_custom_objects().update({'CustomLayer': CustomLayer})  

通过这种方式,一旦您执行了这些代码,并使用tf.keras.models保存了您的模型。Save_model或model。save或ModelCheckpoint回调,您可以重新加载您的模型,而不需要精确的自定义对象,就像这样简单

new_model = tf.keras.models.load_model("./model.h5"})

模型有两个部分,模型定义,由Supervisor保存为图。模型目录中的PBTXT和张量的数值,保存到检查点文件,如model.ckpt-1003418。

可以使用tf恢复模型定义。import_graph_def,并且使用Saver恢复权重。

然而,Saver使用特殊的集合保存附加到模型Graph的变量列表,并且这个集合没有使用import_graph_def初始化,所以您目前不能同时使用这两者(这在我们的路线图中进行修复)。现在,您必须使用Ryan Sepassi的方法——手动构造具有相同节点名称的图,并使用Saver将权重加载到其中。

(或者,您可以通过使用import_graph_def,手动创建变量和使用tf.add_to_collection(tf.GraphKeys. collection)来破解它。变量,变量)为每个变量,然后使用Saver)

这里所有的答案都很棒,但我想补充两点。

首先,详细说明@user7505159的答案,“。添加到要恢复的文件名的开头可能很重要。

例如,您可以保存没有“的图形。/"在文件名中如下所示:

# Some graph defined up here with specific names

saver = tf.train.Saver()
save_file = 'model.ckpt'

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    saver.save(sess, save_file)

但是为了恢复图形,您可能需要在前面加上一个"。/"到file_name:

# Same graph defined up here

saver = tf.train.Saver()
save_file = './' + 'model.ckpt' # String addition used for emphasis

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    saver.restore(sess, save_file)

你并不总是需要“。/”,但是它会根据你的环境和TensorFlow版本而导致问题。

它还想提到sess.run(tf.global_variables_initializer())在恢复会话之前可能很重要。

如果在尝试恢复保存的会话时收到关于未初始化变量的错误,请确保在保存程序之前包含sess.run(tf.global_variables_initializer())。恢复(sess, save_file)行。这样你就不用头疼了。

对于张量流2.0,它非常简单

#保存模型 model.save(“path_to_my_model.h5”)

恢复:

new_model = tensorflow.keras.models.load_model('path_to_my_model.h5')

你可以使用Tensorflow中的saver对象来保存你训练过的模型。该对象提供保存和恢复模型的方法。

在TensorFlow中保存一个训练好的模型:

tf.train.Saver.save(sess, save_path, global_step=None, latest_filename=None,
                    meta_graph_suffix='meta', write_meta_graph=True,
                    write_state=True, strip_default_attrs=False,
                    save_debug_info=False)

在TensorFlow中恢复已保存的模型:

tf.train.Saver.restore(sess, save_path, latest_filename=None,
                       meta_graph_suffix='meta', clear_devices=False,
                       import_scope=None)