我有一个熊猫数据帧,df:

   c1   c2
0  10  100
1  11  110
2  12  120

如何迭代此数据帧的行?对于每一行,我希望能够通过列的名称访问其元素(单元格中的值)。例如:

for row in df.rows:
    print(row['c1'], row['c2'])

我发现了一个类似的问题,建议使用以下任一项:

for date, row in df.T.iteritems():
for row in df.iterrows():

但我不知道row对象是什么,以及如何使用它。


当前回答

正如公认的答案所述,在行上应用函数的最快方法是使用矢量化函数,即所谓的NumPy-ufuncs(通用函数)。

但是,当您要应用的函数尚未在NumPy中实现时,应该怎么做?

好吧,使用numba的矢量化装饰器,您可以轻松地直接在Python中创建ufunc,如下所示:

from numba import vectorize, float64

@vectorize([float64(float64)])
def f(x):
    #x is your line, do something with it, and return a float

此函数的文档如下:创建NumPy通用函数

其他回答

您还可以进行NumPy索引,以实现更高的速度。它不是真正的迭代,但对某些应用程序来说,它比迭代好得多。

subset = row['c1'][0:5]
all = row['c1'][:]

您可能还希望将其强制转换为数组。这些索引/选择本来应该像NumPy数组一样,但我遇到了一些问题,需要转换

np.asarray(all)
imgs[:] = cv2.resize(imgs[:], (224,224) ) # Resize every image in an hdf5 file

有时,有用的模式是:

# Borrowing @KutalmisB df example
df = pd.DataFrame({'col1': [1, 2], 'col2': [0.1, 0.2]}, index=['a', 'b'])
# The to_dict call results in a list of dicts
# where each row_dict is a dictionary with k:v pairs of columns:value for that row
for row_dict in df.to_dict(orient='records'):
    print(row_dict)

结果是:

{'col1':1.0, 'col2':0.1}
{'col1':2.0, 'col2':0.2}

要循环数据帧中的所有行,可以使用:

for x in range(len(date_example.index)):
    print date_example['Date'].iloc[x]

您还可以使用df.apply()来迭代行并访问函数的多个列。

docs:DataFrame.apply()

def valuation_formula(x, y):
    return x * y * 0.5

df['price'] = df.apply(lambda row: valuation_formula(row['x'], row['y']), axis=1)

使用df.iloc[]。例如,使用数据帧“rows_df”:

Or

要从特定行获取值,可以将数据帧转换为ndarray。

然后选择行和列值,如下所示: