我有一个熊猫数据帧,df:

   c1   c2
0  10  100
1  11  110
2  12  120

如何迭代此数据帧的行?对于每一行,我希望能够通过列的名称访问其元素(单元格中的值)。例如:

for row in df.rows:
    print(row['c1'], row['c2'])

我发现了一个类似的问题,建议使用以下任一项:

for date, row in df.T.iteritems():
for row in df.iterrows():

但我不知道row对象是什么,以及如何使用它。


当前回答

有时循环确实比矢量化代码更好

正如这里的许多答案正确指出的那样,Pandas中的默认计划应该是编写矢量化代码(带有隐式循环),而不是自己尝试显式循环。但问题仍然是你是否应该在Pandas中编写循环,如果是的话,在这些情况下最好的循环方式是什么。

我认为,至少有一种情况下循环是合适的:当您需要以某种复杂的方式计算依赖于其他行中的值的函数时。在这种情况下,循环代码通常比矢量化代码更简单、更可读、更不易出错。

循环代码甚至可能更快,正如您将在下面看到的那样,所以在速度至关重要的情况下,循环可能是有意义的。但实际上,这些只是一些情况的子集,您可能应该首先使用numpy/numa(而不是Pandas),因为优化的numpy/noma几乎总是比Pandas更快。

让我们用一个例子来说明这一点。假设您希望获取一列的累积和,但每当其他列等于零时,将其重置:

import pandas as pd
import numpy as np

df = pd.DataFrame( { 'x':[1,2,3,4,5,6], 'y':[1,1,1,0,1,1]  } )

#   x  y  desired_result
#0  1  1               1
#1  2  1               3
#2  3  1               6
#3  4  0               4
#4  5  1               9
#5  6  1              15

这是一个很好的例子,你当然可以写一行Pandas来实现这一点,尽管它不是特别可读,特别是如果你还没有对Pandas有足够的经验:

df.groupby( (df.y==0).cumsum() )['x'].cumsum()

对于大多数情况来说,这将足够快,尽管您也可以通过避免groupby来编写更快的代码,但它可能更不可读。

或者,如果我们把它写成一个循环呢?您可以使用NumPy执行以下操作:

import numba as nb

@nb.jit(nopython=True)  # Optional
def custom_sum(x,y):
    x_sum = x.copy()
    for i in range(1,len(df)):
        if y[i] > 0: x_sum[i] = x_sum[i-1] + x[i]
    return x_sum

df['desired_result'] = custom_sum( df.x.to_numpy(), df.y.to_numpy() )

诚然,将DataFrame列转换为NumPy数组需要一些开销,但核心代码只有一行代码,即使您对Pandas或NumPy一无所知,也可以阅读:

if y[i] > 0: x_sum[i] = x_sum[i-1] + x[i]

这段代码实际上比矢量化代码更快。在一些具有100000行的快速测试中,上述方法比groupby方法快大约10倍。注意,速度的一个关键是numba,这是可选的。如果没有“@nb.jit”行,循环代码实际上比groupby方法慢大约10倍。

显然,这个示例非常简单,您可能更喜欢一行panda,而不是编写一个带有相关开销的循环。然而,对于这个问题,有更复杂的版本,NumPy/numa循环方法的可读性或速度可能是有意义的。

其他回答

对于查看和修改值,我将使用iterrows()。在for循环中,通过使用元组解包(参见示例:i,row),我使用行仅查看值,并在需要修改值时使用i和loc方法。正如前面的回答所述,这里您不应该修改正在迭代的内容。

for i, row in df.iterrows():
    df_column_A = df.loc[i, 'A']
    if df_column_A == 'Old_Value':
        df_column_A = 'New_value'  

在这里,循环中的行是该行的副本,而不是它的视图。因此,您不应该编写类似于行['a']='New_Value'的内容,它不会修改DataFrame。但是,您可以使用i和loc并指定DataFrame来完成这项工作。

您可以编写自己的迭代器来实现namedtuple

from collections import namedtuple

def myiter(d, cols=None):
    if cols is None:
        v = d.values.tolist()
        cols = d.columns.values.tolist()
    else:
        j = [d.columns.get_loc(c) for c in cols]
        v = d.values[:, j].tolist()

    n = namedtuple('MyTuple', cols)

    for line in iter(v):
        yield n(*line)

这与pd.DataFrame.itertuples直接相当。我的目标是以更高的效率执行相同的任务。


对于具有我的函数的给定数据帧:

list(myiter(df))

[MyTuple(c1=10, c2=100), MyTuple(c1=11, c2=110), MyTuple(c1=12, c2=120)]

或使用pd.DataFrame.itertuples:

list(df.itertuples(index=False))

[Pandas(c1=10, c2=100), Pandas(c1=11, c2=110), Pandas(c1=12, c2=120)]

全面测试我们测试使所有列可用并对列进行子设置。

def iterfullA(d):
    return list(myiter(d))

def iterfullB(d):
    return list(d.itertuples(index=False))

def itersubA(d):
    return list(myiter(d, ['col3', 'col4', 'col5', 'col6', 'col7']))

def itersubB(d):
    return list(d[['col3', 'col4', 'col5', 'col6', 'col7']].itertuples(index=False))

res = pd.DataFrame(
    index=[10, 30, 100, 300, 1000, 3000, 10000, 30000],
    columns='iterfullA iterfullB itersubA itersubB'.split(),
    dtype=float
)

for i in res.index:
    d = pd.DataFrame(np.random.randint(10, size=(i, 10))).add_prefix('col')
    for j in res.columns:
        stmt = '{}(d)'.format(j)
        setp = 'from __main__ import d, {}'.format(j)
        res.at[i, j] = timeit(stmt, setp, number=100)

res.groupby(res.columns.str[4:-1], axis=1).plot(loglog=True);

您还可以进行NumPy索引,以实现更高的速度。它不是真正的迭代,但对某些应用程序来说,它比迭代好得多。

subset = row['c1'][0:5]
all = row['c1'][:]

您可能还希望将其强制转换为数组。这些索引/选择本来应该像NumPy数组一样,但我遇到了一些问题,需要转换

np.asarray(all)
imgs[:] = cv2.resize(imgs[:], (224,224) ) # Resize every image in an hdf5 file

虽然iterrows()是一个很好的选项,但有时itertples()会快得多:

df = pd.DataFrame({'a': randn(1000), 'b': randn(1000),'N': randint(100, 1000, (1000)), 'x': 'x'})

%timeit [row.a * 2 for idx, row in df.iterrows()]
# => 10 loops, best of 3: 50.3 ms per loop

%timeit [row[1] * 2 for row in df.itertuples()]
# => 1000 loops, best of 3: 541 µs per loop

您还可以使用df.apply()来迭代行并访问函数的多个列。

docs:DataFrame.apply()

def valuation_formula(x, y):
    return x * y * 0.5

df['price'] = df.apply(lambda row: valuation_formula(row['x'], row['y']), axis=1)