我有一个熊猫数据帧,df:
c1 c2
0 10 100
1 11 110
2 12 120
如何迭代此数据帧的行?对于每一行,我希望能够通过列的名称访问其元素(单元格中的值)。例如:
for row in df.rows:
print(row['c1'], row['c2'])
我发现了一个类似的问题,建议使用以下任一项:
for date, row in df.T.iteritems():
for row in df.iterrows():
但我不知道row对象是什么,以及如何使用它。
正如公认的答案所述,在行上应用函数的最快方法是使用矢量化函数,即所谓的NumPy-ufuncs(通用函数)。
但是,当您要应用的函数尚未在NumPy中实现时,应该怎么做?
好吧,使用numba的矢量化装饰器,您可以轻松地直接在Python中创建ufunc,如下所示:
from numba import vectorize, float64
@vectorize([float64(float64)])
def f(x):
#x is your line, do something with it, and return a float
此函数的文档如下:创建NumPy通用函数
为了循环数据帧中的所有行并方便地使用每行的值,可以将命名元组转换为ndarray。例如:
df = pd.DataFrame({'col1': [1, 2], 'col2': [0.1, 0.2]}, index=['a', 'b'])
在行上循环:
for row in df.itertuples(index=False, name='Pandas'):
print np.asarray(row)
结果是:
[ 1. 0.1]
[ 2. 0.2]
请注意,如果index=True,则将索引添加为元组的第一个元素,这对于某些应用程序来说可能是不可取的。