我有一个熊猫数据帧,df:

   c1   c2
0  10  100
1  11  110
2  12  120

如何迭代此数据帧的行?对于每一行,我希望能够通过列的名称访问其元素(单元格中的值)。例如:

for row in df.rows:
    print(row['c1'], row['c2'])

我发现了一个类似的问题,建议使用以下任一项:

for date, row in df.T.iteritems():
for row in df.iterrows():

但我不知道row对象是什么,以及如何使用它。


当前回答

我正在寻找如何迭代行和列,并在这里结束:

for i, row in df.iterrows():
    for j, column in row.iteritems():
        print(column)

其他回答

您应该使用df.iterrows()。虽然逐行迭代不是特别有效,因为必须创建Series对象。

DataFrame.iterrows是一个生成索引和行(作为一个系列)的生成器:

import pandas as pd

df = pd.DataFrame({'c1': [10, 11, 12], 'c2': [100, 110, 120]})
df = df.reset_index()  # make sure indexes pair with number of rows

for index, row in df.iterrows():
    print(row['c1'], row['c2'])
10 100
11 110
12 120

正如公认的答案所述,在行上应用函数的最快方法是使用矢量化函数,即所谓的NumPy-ufuncs(通用函数)。

但是,当您要应用的函数尚未在NumPy中实现时,应该怎么做?

好吧,使用numba的矢量化装饰器,您可以轻松地直接在Python中创建ufunc,如下所示:

from numba import vectorize, float64

@vectorize([float64(float64)])
def f(x):
    #x is your line, do something with it, and return a float

此函数的文档如下:创建NumPy通用函数

我正在寻找如何迭代行和列,并在这里结束:

for i, row in df.iterrows():
    for j, column in row.iteritems():
        print(column)
 for ind in df.index:
     print df['c1'][ind], df['c2'][ind]