我有一个熊猫数据帧,df:

   c1   c2
0  10  100
1  11  110
2  12  120

如何迭代此数据帧的行?对于每一行,我希望能够通过列的名称访问其元素(单元格中的值)。例如:

for row in df.rows:
    print(row['c1'], row['c2'])

我发现了一个类似的问题,建议使用以下任一项:

for date, row in df.T.iteritems():
for row in df.iterrows():

但我不知道row对象是什么,以及如何使用它。


当前回答

您应该使用df.iterrows()。虽然逐行迭代不是特别有效,因为必须创建Series对象。

其他回答

在Pandas数据帧中有很多方法可以迭代行。一种非常简单直观的方法是:

df = pd.DataFrame({'A':[1, 2, 3], 'B':[4, 5, 6], 'C':[7, 8, 9]})
print(df)
for i in range(df.shape[0]):
    # For printing the second column
    print(df.iloc[i, 1])

    # For printing more than one columns
    print(df.iloc[i, [0, 2]])

对于查看和修改值,我将使用iterrows()。在for循环中,通过使用元组解包(参见示例:i,row),我使用行仅查看值,并在需要修改值时使用i和loc方法。正如前面的回答所述,这里您不应该修改正在迭代的内容。

for i, row in df.iterrows():
    df_column_A = df.loc[i, 'A']
    if df_column_A == 'Old_Value':
        df_column_A = 'New_value'  

在这里,循环中的行是该行的副本,而不是它的视图。因此,您不应该编写类似于行['a']='New_Value'的内容,它不会修改DataFrame。但是,您可以使用i和loc并指定DataFrame来完成这项工作。

您应该使用df.iterrows()。虽然逐行迭代不是特别有效,因为必须创建Series对象。

有一种方法可以在返回DataFrame而不是Series时迭代抛出行。我没有看到任何人提到可以将索引作为列表传递给要作为DataFrame返回的行:

for i in range(len(df)):
    row = df.iloc[[i]]

注意双括号的用法。这将返回具有单行的DataFrame。

有时,有用的模式是:

# Borrowing @KutalmisB df example
df = pd.DataFrame({'col1': [1, 2], 'col2': [0.1, 0.2]}, index=['a', 'b'])
# The to_dict call results in a list of dicts
# where each row_dict is a dictionary with k:v pairs of columns:value for that row
for row_dict in df.to_dict(orient='records'):
    print(row_dict)

结果是:

{'col1':1.0, 'col2':0.1}
{'col1':2.0, 'col2':0.2}