我有一个熊猫数据帧,df:

   c1   c2
0  10  100
1  11  110
2  12  120

如何迭代此数据帧的行?对于每一行,我希望能够通过列的名称访问其元素(单元格中的值)。例如:

for row in df.rows:
    print(row['c1'], row['c2'])

我发现了一个类似的问题,建议使用以下任一项:

for date, row in df.T.iteritems():
for row in df.iterrows():

但我不知道row对象是什么,以及如何使用它。


当前回答

除了这篇文章中的好答案,我将提出“分而治之”的方法,我写这个答案并不是为了废除其他好答案,而是为了用另一种对我有效的方法来实现它们。它有两个步骤,即拆分和合并熊猫数据帧:

分裂与征服的证明:

您不需要使用矢量化或任何其他方法将数据帧的类型转换为另一种类型您不需要将代码循环化,这通常需要额外的时间在我的例子中,iterrows()和itertples()在整个数据帧上都具有相同的性能根据您对切片索引的选择,您将能够以指数方式加快迭代。索引越高,迭代过程越快。

分裂与征服的缺点:

您不应该依赖于同一数据帧和不同切片的迭代过程。这意味着,如果你想从其他切片读取或写入,那么可能很难做到这一点。

===============分而治之=================

步骤1:分割/切片

在这一步中,我们将在整个数据帧上划分迭代。假设你要将一个CSV文件读入panda df,然后对其进行迭代。在这种情况下,我有5000000条记录,我要将其拆分为100000条记录。

注意:我需要重申,正如本页其他解决方案中解释的其他运行时分析一样,在df上搜索时,“记录数”与“运行时”成指数比例。基于我的数据基准,以下是结果:

Number of records | Iteration rate [per second]
========================================
100,000           | 500
500,000           | 200
1,000,000         | 50
5,000,000         | 20

第2步:合并

这将是一个简单的步骤,只需将所有写入的CSV文件合并到一个数据帧中,然后将其写入一个更大的CSV文件。

以下是示例代码:

# Step 1 (Splitting/Slicing)
import pandas as pd
df_all = pd.read_csv('C:/KtV.csv')
df_index = 100000
df_len = len(df)
for i in range(df_len // df_index + 1):
    lower_bound = i * df_index
    higher_bound = min(lower_bound + df_index, df_len)
    # Splitting/slicing df (make sure to copy() otherwise it will be a view
    df = df_all[lower_bound:higher_bound].copy()
    '''
    Write your iteration over the sliced df here
    using iterrows() or intertuples() or ...
    '''
    # Writing into CSV files
    df.to_csv('C:/KtV_prep_' + str(i) + '.csv')



# Step 2 (Merging)
filename = 'C:/KtV_prep_'
df = (pd.read_csv(f) for f in [filename + str(i) + '.csv' for i in range(ktv_len // ktv_index + 1)])
df_prep_all = pd.concat(df)
df_prep_all.to_csv('C:/KtV_prep_all.csv')

参考:

数据流迭代的有效方法

将CSV文件连接到一个Pandas数据帧中

其他回答

虽然iterrows()是一个很好的选项,但有时itertples()会快得多:

df = pd.DataFrame({'a': randn(1000), 'b': randn(1000),'N': randint(100, 1000, (1000)), 'x': 'x'})

%timeit [row.a * 2 for idx, row in df.iterrows()]
# => 10 loops, best of 3: 50.3 ms per loop

%timeit [row[1] * 2 for row in df.itertuples()]
# => 1000 loops, best of 3: 541 µs per loop

在Pandas数据帧中有很多方法可以迭代行。一种非常简单直观的方法是:

df = pd.DataFrame({'A':[1, 2, 3], 'B':[4, 5, 6], 'C':[7, 8, 9]})
print(df)
for i in range(df.shape[0]):
    # For printing the second column
    print(df.iloc[i, 1])

    # For printing more than one columns
    print(df.iloc[i, [0, 2]])

首先考虑是否真的需要迭代DataFrame中的行。请参阅此答案以了解备选方案。

如果仍然需要迭代行,可以使用以下方法。请注意其他答案中未提及的一些重要注意事项。

DataFrame.iterrows()对于索引,df.iterrows()中的行:打印(行[“c1”],行[“c2”])DataFrame.itertuples()对于df.itertuples中的行(索引=True,名称=“标准”):打印(第c1行,第c2行)

itertples()应该比iterrows()快

但请注意,根据文件(熊猫目前为0.24.2):

iterrows:dtype可能在行与行之间不匹配

因为iterrows为每一行返回一个Series,所以它不会跨行保留数据类型(数据帧的数据类型跨列保留)。为了在遍历行时保留数据类型,最好使用itertples(),它返回值的namedtuples,通常比iterrows()快得多

iterrows:不修改行

您不应该修改正在迭代的内容。这并不能保证在所有情况下都有效。根据数据类型的不同,迭代器返回的是副本而不是视图,写入它不会产生任何影响。

请改用DataFrame.apply():

    new_df = df.apply(lambda x: x * 2, axis = 1)

迭代:

如果列名是无效的Python标识符、重复或以下划线开头,则将重命名为位置名。对于大量列(>255),将返回常规元组。

有关详细信息,请参阅panda迭代文档。

为了循环数据帧中的所有行并方便地使用每行的值,可以将命名元组转换为ndarray。例如:

df = pd.DataFrame({'col1': [1, 2], 'col2': [0.1, 0.2]}, index=['a', 'b'])

在行上循环:

for row in df.itertuples(index=False, name='Pandas'):
    print np.asarray(row)

结果是:

[ 1.   0.1]
[ 2.   0.2]

请注意,如果index=True,则将索引添加为元组的第一个元素,这对于某些应用程序来说可能是不可取的。

有些库(例如我使用的Java互操作库)要求一次在一行中传递值,例如,如果是流数据。为了复制流式传输的特性,我将数据帧值逐一“流式传输”,我写了以下内容,这些内容不时会派上用场。

class DataFrameReader:
  def __init__(self, df):
    self._df = df
    self._row = None
    self._columns = df.columns.tolist()
    self.reset()
    self.row_index = 0

  def __getattr__(self, key):
    return self.__getitem__(key)

  def read(self) -> bool:
    self._row = next(self._iterator, None)
    self.row_index += 1
    return self._row is not None

  def columns(self):
    return self._columns

  def reset(self) -> None:
    self._iterator = self._df.itertuples()

  def get_index(self):
    return self._row[0]

  def index(self):
    return self._row[0]

  def to_dict(self, columns: List[str] = None):
    return self.row(columns=columns)

  def tolist(self, cols) -> List[object]:
    return [self.__getitem__(c) for c in cols]

  def row(self, columns: List[str] = None) -> Dict[str, object]:
    cols = set(self._columns if columns is None else columns)
    return {c : self.__getitem__(c) for c in self._columns if c in cols}

  def __getitem__(self, key) -> object:
    # the df index of the row is at index 0
    try:
        if type(key) is list:
            ix = [self._columns.index(key) + 1 for k in key]
        else:
            ix = self._columns.index(key) + 1
        return self._row[ix]
    except BaseException as e:
        return None

  def __next__(self) -> 'DataFrameReader':
    if self.read():
        return self
    else:
        raise StopIteration

  def __iter__(self) -> 'DataFrameReader':
    return self

可用于:

for row in DataFrameReader(df):
  print(row.my_column_name)
  print(row.to_dict())
  print(row['my_column_name'])
  print(row.tolist())

并保留正在迭代的行的值/名称映射。显然,它比上面提到的使用apply和Cython慢得多,但在某些情况下是必要的。