我有一个熊猫数据帧,df:
c1 c2
0 10 100
1 11 110
2 12 120
如何迭代此数据帧的行?对于每一行,我希望能够通过列的名称访问其元素(单元格中的值)。例如:
for row in df.rows:
print(row['c1'], row['c2'])
我发现了一个类似的问题,建议使用以下任一项:
for date, row in df.T.iteritems():
for row in df.iterrows():
但我不知道row对象是什么,以及如何使用它。
虽然iterrows()是一个很好的选项,但有时itertples()会快得多:
df = pd.DataFrame({'a': randn(1000), 'b': randn(1000),'N': randint(100, 1000, (1000)), 'x': 'x'})
%timeit [row.a * 2 for idx, row in df.iterrows()]
# => 10 loops, best of 3: 50.3 ms per loop
%timeit [row[1] * 2 for row in df.itertuples()]
# => 1000 loops, best of 3: 541 µs per loop
您还可以进行NumPy索引,以实现更高的速度。它不是真正的迭代,但对某些应用程序来说,它比迭代好得多。
subset = row['c1'][0:5]
all = row['c1'][:]
您可能还希望将其强制转换为数组。这些索引/选择本来应该像NumPy数组一样,但我遇到了一些问题,需要转换
np.asarray(all)
imgs[:] = cv2.resize(imgs[:], (224,224) ) # Resize every image in an hdf5 file