如何高效迭代
如果您真的需要迭代Pandas数据帧,您可能希望避免使用iterrows()。有不同的方法,通常的iterrows()远远不是最好的。itertples()可以快100倍。
简而言之:
作为一般规则,使用df.itertuples(name=None)。特别是当列数固定且少于255列时。见第(3)点否则,请使用df.itertuples(),除非您的列包含空格或“-”等特殊字符。见第(2)点使用上一个示例,即使数据帧中有奇怪的列,也可以使用itertples()。见第(4)点如果无法使用前面的解决方案,请仅使用iterrows()。见第(1)点
对Pandas数据帧中的行进行迭代的不同方法:
生成具有百万行和4列的随机数据帧:
df = pd.DataFrame(np.random.randint(0, 100, size=(1000000, 4)), columns=list('ABCD'))
print(df)
1) 通常的iterrows()很方便,但速度很慢:
start_time = time.clock()
result = 0
for _, row in df.iterrows():
result += max(row['B'], row['C'])
total_elapsed_time = round(time.clock() - start_time, 2)
print("1. Iterrows done in {} seconds, result = {}".format(total_elapsed_time, result))
2) 默认的itertples()已经快得多,但它不适用于列名称,例如My Col Name is very Strange(我的列名称非常奇怪)(如果列重复或列名称不能简单地转换为Python变量名称,则应避免使用此方法)
start_time = time.clock()
result = 0
for row in df.itertuples(index=False):
result += max(row.B, row.C)
total_elapsed_time = round(time.clock() - start_time, 2)
print("2. Named Itertuples done in {} seconds, result = {}".format(total_elapsed_time, result))
3) 使用name=None的默认itertples()甚至更快,但并不方便,因为您必须为每列定义一个变量。
start_time = time.clock()
result = 0
for(_, col1, col2, col3, col4) in df.itertuples(name=None):
result += max(col2, col3)
total_elapsed_time = round(time.clock() - start_time, 2)
print("3. Itertuples done in {} seconds, result = {}".format(total_elapsed_time, result))
4) 最后,命名的itertples()比上一点慢,但您不必为每列定义变量,它可以处理列名称,例如My Col Name is very Strange。
start_time = time.clock()
result = 0
for row in df.itertuples(index=False):
result += max(row[df.columns.get_loc('B')], row[df.columns.get_loc('C')])
total_elapsed_time = round(time.clock() - start_time, 2)
print("4. Polyvalent Itertuples working even with special characters in the column name done in {} seconds, result = {}".format(total_elapsed_time, result))
输出:
A B C D
0 41 63 42 23
1 54 9 24 65
2 15 34 10 9
3 39 94 82 97
4 4 88 79 54
... .. .. .. ..
999995 48 27 4 25
999996 16 51 34 28
999997 1 39 61 14
999998 66 51 27 70
999999 51 53 47 99
[1000000 rows x 4 columns]
1. Iterrows done in 104.96 seconds, result = 66151519
2. Named Itertuples done in 1.26 seconds, result = 66151519
3. Itertuples done in 0.94 seconds, result = 66151519
4. Polyvalent Itertuples working even with special characters in the column name done in 2.94 seconds, result = 66151519
本文是iterrows和itertules之间的一个非常有趣的比较