我有一个熊猫数据帧,df:
c1 c2
0 10 100
1 11 110
2 12 120
如何迭代此数据帧的行?对于每一行,我希望能够通过列的名称访问其元素(单元格中的值)。例如:
for row in df.rows:
print(row['c1'], row['c2'])
我发现了一个类似的问题,建议使用以下任一项:
for date, row in df.T.iteritems():
for row in df.iterrows():
但我不知道row对象是什么,以及如何使用它。
我们有多种选择来做同样的事情,很多人都分享了他们的答案。
我发现以下两种方法既简单又有效:
DataFrame.iterrows()DataFrame.itertuples()
例子:
import pandas as pd
inp = [{'c1':10, 'c2':100}, {'c1':11,'c2':110}, {'c1':12,'c2':120}]
df = pd.DataFrame(inp)
print (df)
# With the iterrows method
for index, row in df.iterrows():
print(row["c1"], row["c2"])
# With the itertuples method
for row in df.itertuples(index=True, name='Pandas'):
print(row.c1, row.c2)
注意:itertples()应该比iterrows()快
虽然iterrows()是一个很好的选项,但有时itertples()会快得多:
df = pd.DataFrame({'a': randn(1000), 'b': randn(1000),'N': randint(100, 1000, (1000)), 'x': 'x'})
%timeit [row.a * 2 for idx, row in df.iterrows()]
# => 10 loops, best of 3: 50.3 ms per loop
%timeit [row[1] * 2 for row in df.itertuples()]
# => 1000 loops, best of 3: 541 µs per loop
DataFrame.iterrows是一个生成索引和行(作为一个系列)的生成器:
import pandas as pd
df = pd.DataFrame({'c1': [10, 11, 12], 'c2': [100, 110, 120]})
df = df.reset_index() # make sure indexes pair with number of rows
for index, row in df.iterrows():
print(row['c1'], row['c2'])
10 100
11 110
12 120