我有一个熊猫数据帧,df:

   c1   c2
0  10  100
1  11  110
2  12  120

如何迭代此数据帧的行?对于每一行,我希望能够通过列的名称访问其元素(单元格中的值)。例如:

for row in df.rows:
    print(row['c1'], row['c2'])

我发现了一个类似的问题,建议使用以下任一项:

for date, row in df.T.iteritems():
for row in df.iterrows():

但我不知道row对象是什么,以及如何使用它。


当前回答

我们有多种选择来做同样的事情,很多人都分享了他们的答案。

我发现以下两种方法既简单又有效:

DataFrame.iterrows()DataFrame.itertuples()

例子:

 import pandas as pd
 inp = [{'c1':10, 'c2':100}, {'c1':11,'c2':110}, {'c1':12,'c2':120}]
 df = pd.DataFrame(inp)
 print (df)

 # With the iterrows method

 for index, row in df.iterrows():
     print(row["c1"], row["c2"])

 # With the itertuples method

 for row in df.itertuples(index=True, name='Pandas'):
     print(row.c1, row.c2)

注意:itertples()应该比iterrows()快

其他回答

本例使用iloc隔离数据帧中的每个数字。

import pandas as pd

 a = [1, 2, 3, 4]
 b = [5, 6, 7, 8]

 mjr = pd.DataFrame({'a':a, 'b':b})

 size = mjr.shape

 for i in range(size[0]):
     for j in range(size[1]):
         print(mjr.iloc[i, j])

如何高效迭代

如果您真的需要迭代Pandas数据帧,您可能希望避免使用iterrows()。有不同的方法,通常的iterrows()远远不是最好的。itertples()可以快100倍。

简而言之:

作为一般规则,使用df.itertuples(name=None)。特别是当列数固定且少于255列时。见第(3)点否则,请使用df.itertuples(),除非您的列包含空格或“-”等特殊字符。见第(2)点使用上一个示例,即使数据帧中有奇怪的列,也可以使用itertples()。见第(4)点如果无法使用前面的解决方案,请仅使用iterrows()。见第(1)点

对Pandas数据帧中的行进行迭代的不同方法:

生成具有百万行和4列的随机数据帧:

    df = pd.DataFrame(np.random.randint(0, 100, size=(1000000, 4)), columns=list('ABCD'))
    print(df)

1) 通常的iterrows()很方便,但速度很慢:

start_time = time.clock()
result = 0
for _, row in df.iterrows():
    result += max(row['B'], row['C'])

total_elapsed_time = round(time.clock() - start_time, 2)
print("1. Iterrows done in {} seconds, result = {}".format(total_elapsed_time, result))

2) 默认的itertples()已经快得多,但它不适用于列名称,例如My Col Name is very Strange(我的列名称非常奇怪)(如果列重复或列名称不能简单地转换为Python变量名称,则应避免使用此方法)

start_time = time.clock()
result = 0
for row in df.itertuples(index=False):
    result += max(row.B, row.C)

total_elapsed_time = round(time.clock() - start_time, 2)
print("2. Named Itertuples done in {} seconds, result = {}".format(total_elapsed_time, result))

3) 使用name=None的默认itertples()甚至更快,但并不方便,因为您必须为每列定义一个变量。

start_time = time.clock()
result = 0
for(_, col1, col2, col3, col4) in df.itertuples(name=None):
    result += max(col2, col3)

total_elapsed_time = round(time.clock() - start_time, 2)
print("3. Itertuples done in {} seconds, result = {}".format(total_elapsed_time, result))

4) 最后,命名的itertples()比上一点慢,但您不必为每列定义变量,它可以处理列名称,例如My Col Name is very Strange。

start_time = time.clock()
result = 0
for row in df.itertuples(index=False):
    result += max(row[df.columns.get_loc('B')], row[df.columns.get_loc('C')])

total_elapsed_time = round(time.clock() - start_time, 2)
print("4. Polyvalent Itertuples working even with special characters in the column name done in {} seconds, result = {}".format(total_elapsed_time, result))

输出:

         A   B   C   D
0       41  63  42  23
1       54   9  24  65
2       15  34  10   9
3       39  94  82  97
4        4  88  79  54
...     ..  ..  ..  ..
999995  48  27   4  25
999996  16  51  34  28
999997   1  39  61  14
999998  66  51  27  70
999999  51  53  47  99

[1000000 rows x 4 columns]

1. Iterrows done in 104.96 seconds, result = 66151519
2. Named Itertuples done in 1.26 seconds, result = 66151519
3. Itertuples done in 0.94 seconds, result = 66151519
4. Polyvalent Itertuples working even with special characters in the column name done in 2.94 seconds, result = 66151519

本文是iterrows和itertules之间的一个非常有趣的比较

正如公认的答案所述,在行上应用函数的最快方法是使用矢量化函数,即所谓的NumPy-ufuncs(通用函数)。

但是,当您要应用的函数尚未在NumPy中实现时,应该怎么做?

好吧,使用numba的矢量化装饰器,您可以轻松地直接在Python中创建ufunc,如下所示:

from numba import vectorize, float64

@vectorize([float64(float64)])
def f(x):
    #x is your line, do something with it, and return a float

此函数的文档如下:创建NumPy通用函数

免责声明:尽管这里有很多答案建议不要使用迭代(循环)方法(我基本同意),但我仍然认为这是一种适用于以下情况的合理方法:

使用API中的数据扩展数据帧

假设您有一个包含不完整用户数据的大型数据帧。现在,您必须使用其他列来扩展此数据,例如,用户的年龄和性别。

这两个值都必须从后端API获取。我假设API不提供“批处理”端点(一次接受多个用户ID)。否则,您应该只调用一次API。

网络请求的成本(等待时间)远远超过了数据帧的迭代。我们讨论的是数百毫秒的网络往返时间,相比之下,使用迭代的替代方法可以忽略不计的小增益。

每行一个昂贵的网络请求

所以在这种情况下,我绝对倾向于使用迭代方法。尽管网络请求很昂贵,但可以保证对数据帧中的每一行只触发一次。以下是使用DataFrame.iterrows的示例:

实例

for index, row in users_df.iterrows():
  user_id = row['user_id']

  # Trigger expensive network request once for each row
  response_dict = backend_api.get(f'/api/user-data/{user_id}')

  # Extend dataframe with multiple data from response
  users_df.at[index, 'age'] = response_dict.get('age')
  users_df.at[index, 'gender'] = response_dict.get('gender')

您还可以使用df.apply()来迭代行并访问函数的多个列。

docs:DataFrame.apply()

def valuation_formula(x, y):
    return x * y * 0.5

df['price'] = df.apply(lambda row: valuation_formula(row['x'], row['y']), axis=1)