我有一个熊猫数据帧,df:
c1 c2
0 10 100
1 11 110
2 12 120
如何迭代此数据帧的行?对于每一行,我希望能够通过列的名称访问其元素(单元格中的值)。例如:
for row in df.rows:
print(row['c1'], row['c2'])
我发现了一个类似的问题,建议使用以下任一项:
for date, row in df.T.iteritems():
for row in df.iterrows():
但我不知道row对象是什么,以及如何使用它。
DataFrame.iterrows是一个生成索引和行(作为一个系列)的生成器:
import pandas as pd
df = pd.DataFrame({'c1': [10, 11, 12], 'c2': [100, 110, 120]})
df = df.reset_index() # make sure indexes pair with number of rows
for index, row in df.iterrows():
print(row['c1'], row['c2'])
10 100
11 110
12 120
有时,有用的模式是:
# Borrowing @KutalmisB df example
df = pd.DataFrame({'col1': [1, 2], 'col2': [0.1, 0.2]}, index=['a', 'b'])
# The to_dict call results in a list of dicts
# where each row_dict is a dictionary with k:v pairs of columns:value for that row
for row_dict in df.to_dict(orient='records'):
print(row_dict)
结果是:
{'col1':1.0, 'col2':0.1}
{'col1':2.0, 'col2':0.2}