我有一个熊猫数据帧,df:

   c1   c2
0  10  100
1  11  110
2  12  120

如何迭代此数据帧的行?对于每一行,我希望能够通过列的名称访问其元素(单元格中的值)。例如:

for row in df.rows:
    print(row['c1'], row['c2'])

我发现了一个类似的问题,建议使用以下任一项:

for date, row in df.T.iteritems():
for row in df.iterrows():

但我不知道row对象是什么,以及如何使用它。


当前回答

iterrows()返回元组(a,b),其中a是索引,b是行。

其他回答

有些库(例如我使用的Java互操作库)要求一次在一行中传递值,例如,如果是流数据。为了复制流式传输的特性,我将数据帧值逐一“流式传输”,我写了以下内容,这些内容不时会派上用场。

class DataFrameReader:
  def __init__(self, df):
    self._df = df
    self._row = None
    self._columns = df.columns.tolist()
    self.reset()
    self.row_index = 0

  def __getattr__(self, key):
    return self.__getitem__(key)

  def read(self) -> bool:
    self._row = next(self._iterator, None)
    self.row_index += 1
    return self._row is not None

  def columns(self):
    return self._columns

  def reset(self) -> None:
    self._iterator = self._df.itertuples()

  def get_index(self):
    return self._row[0]

  def index(self):
    return self._row[0]

  def to_dict(self, columns: List[str] = None):
    return self.row(columns=columns)

  def tolist(self, cols) -> List[object]:
    return [self.__getitem__(c) for c in cols]

  def row(self, columns: List[str] = None) -> Dict[str, object]:
    cols = set(self._columns if columns is None else columns)
    return {c : self.__getitem__(c) for c in self._columns if c in cols}

  def __getitem__(self, key) -> object:
    # the df index of the row is at index 0
    try:
        if type(key) is list:
            ix = [self._columns.index(key) + 1 for k in key]
        else:
            ix = self._columns.index(key) + 1
        return self._row[ix]
    except BaseException as e:
        return None

  def __next__(self) -> 'DataFrameReader':
    if self.read():
        return self
    else:
        raise StopIteration

  def __iter__(self) -> 'DataFrameReader':
    return self

可用于:

for row in DataFrameReader(df):
  print(row.my_column_name)
  print(row.to_dict())
  print(row['my_column_name'])
  print(row.tolist())

并保留正在迭代的行的值/名称映射。显然,它比上面提到的使用apply和Cython慢得多,但在某些情况下是必要的。

我们有多种选择来做同样的事情,很多人都分享了他们的答案。

我发现以下两种方法既简单又有效:

DataFrame.iterrows()DataFrame.itertuples()

例子:

 import pandas as pd
 inp = [{'c1':10, 'c2':100}, {'c1':11,'c2':110}, {'c1':12,'c2':120}]
 df = pd.DataFrame(inp)
 print (df)

 # With the iterrows method

 for index, row in df.iterrows():
     print(row["c1"], row["c2"])

 # With the itertuples method

 for row in df.itertuples(index=True, name='Pandas'):
     print(row.c1, row.c2)

注意:itertples()应该比iterrows()快

iterrows()返回元组(a,b),其中a是索引,b是行。

可以按如下方式使用df.iloc函数:

for i in range(0, len(df)):
    print(df.iloc[i]['c1'], df.iloc[i]['c2'])

免责声明:尽管这里有很多答案建议不要使用迭代(循环)方法(我基本同意),但我仍然认为这是一种适用于以下情况的合理方法:

使用API中的数据扩展数据帧

假设您有一个包含不完整用户数据的大型数据帧。现在,您必须使用其他列来扩展此数据,例如,用户的年龄和性别。

这两个值都必须从后端API获取。我假设API不提供“批处理”端点(一次接受多个用户ID)。否则,您应该只调用一次API。

网络请求的成本(等待时间)远远超过了数据帧的迭代。我们讨论的是数百毫秒的网络往返时间,相比之下,使用迭代的替代方法可以忽略不计的小增益。

每行一个昂贵的网络请求

所以在这种情况下,我绝对倾向于使用迭代方法。尽管网络请求很昂贵,但可以保证对数据帧中的每一行只触发一次。以下是使用DataFrame.iterrows的示例:

实例

for index, row in users_df.iterrows():
  user_id = row['user_id']

  # Trigger expensive network request once for each row
  response_dict = backend_api.get(f'/api/user-data/{user_id}')

  # Extend dataframe with multiple data from response
  users_df.at[index, 'age'] = response_dict.get('age')
  users_df.at[index, 'gender'] = response_dict.get('gender')