我有一个熊猫数据帧,df:

   c1   c2
0  10  100
1  11  110
2  12  120

如何迭代此数据帧的行?对于每一行,我希望能够通过列的名称访问其元素(单元格中的值)。例如:

for row in df.rows:
    print(row['c1'], row['c2'])

我发现了一个类似的问题,建议使用以下任一项:

for date, row in df.T.iteritems():
for row in df.iterrows():

但我不知道row对象是什么,以及如何使用它。


当前回答

iterrows()返回元组(a,b),其中a是索引,b是行。

其他回答

 for ind in df.index:
     print df['c1'][ind], df['c2'][ind]

首先考虑是否真的需要迭代DataFrame中的行。请参阅此答案以了解备选方案。

如果仍然需要迭代行,可以使用以下方法。请注意其他答案中未提及的一些重要注意事项。

DataFrame.iterrows()对于索引,df.iterrows()中的行:打印(行[“c1”],行[“c2”])DataFrame.itertuples()对于df.itertuples中的行(索引=True,名称=“标准”):打印(第c1行,第c2行)

itertples()应该比iterrows()快

但请注意,根据文件(熊猫目前为0.24.2):

iterrows:dtype可能在行与行之间不匹配

因为iterrows为每一行返回一个Series,所以它不会跨行保留数据类型(数据帧的数据类型跨列保留)。为了在遍历行时保留数据类型,最好使用itertples(),它返回值的namedtuples,通常比iterrows()快得多

iterrows:不修改行

您不应该修改正在迭代的内容。这并不能保证在所有情况下都有效。根据数据类型的不同,迭代器返回的是副本而不是视图,写入它不会产生任何影响。

请改用DataFrame.apply():

    new_df = df.apply(lambda x: x * 2, axis = 1)

迭代:

如果列名是无效的Python标识符、重复或以下划线开头,则将重命名为位置名。对于大量列(>255),将返回常规元组。

有关详细信息,请参阅panda迭代文档。

您还可以进行NumPy索引,以实现更高的速度。它不是真正的迭代,但对某些应用程序来说,它比迭代好得多。

subset = row['c1'][0:5]
all = row['c1'][:]

您可能还希望将其强制转换为数组。这些索引/选择本来应该像NumPy数组一样,但我遇到了一些问题,需要转换

np.asarray(all)
imgs[:] = cv2.resize(imgs[:], (224,224) ) # Resize every image in an hdf5 file

如何高效迭代

如果您真的需要迭代Pandas数据帧,您可能希望避免使用iterrows()。有不同的方法,通常的iterrows()远远不是最好的。itertples()可以快100倍。

简而言之:

作为一般规则,使用df.itertuples(name=None)。特别是当列数固定且少于255列时。见第(3)点否则,请使用df.itertuples(),除非您的列包含空格或“-”等特殊字符。见第(2)点使用上一个示例,即使数据帧中有奇怪的列,也可以使用itertples()。见第(4)点如果无法使用前面的解决方案,请仅使用iterrows()。见第(1)点

对Pandas数据帧中的行进行迭代的不同方法:

生成具有百万行和4列的随机数据帧:

    df = pd.DataFrame(np.random.randint(0, 100, size=(1000000, 4)), columns=list('ABCD'))
    print(df)

1) 通常的iterrows()很方便,但速度很慢:

start_time = time.clock()
result = 0
for _, row in df.iterrows():
    result += max(row['B'], row['C'])

total_elapsed_time = round(time.clock() - start_time, 2)
print("1. Iterrows done in {} seconds, result = {}".format(total_elapsed_time, result))

2) 默认的itertples()已经快得多,但它不适用于列名称,例如My Col Name is very Strange(我的列名称非常奇怪)(如果列重复或列名称不能简单地转换为Python变量名称,则应避免使用此方法)

start_time = time.clock()
result = 0
for row in df.itertuples(index=False):
    result += max(row.B, row.C)

total_elapsed_time = round(time.clock() - start_time, 2)
print("2. Named Itertuples done in {} seconds, result = {}".format(total_elapsed_time, result))

3) 使用name=None的默认itertples()甚至更快,但并不方便,因为您必须为每列定义一个变量。

start_time = time.clock()
result = 0
for(_, col1, col2, col3, col4) in df.itertuples(name=None):
    result += max(col2, col3)

total_elapsed_time = round(time.clock() - start_time, 2)
print("3. Itertuples done in {} seconds, result = {}".format(total_elapsed_time, result))

4) 最后,命名的itertples()比上一点慢,但您不必为每列定义变量,它可以处理列名称,例如My Col Name is very Strange。

start_time = time.clock()
result = 0
for row in df.itertuples(index=False):
    result += max(row[df.columns.get_loc('B')], row[df.columns.get_loc('C')])

total_elapsed_time = round(time.clock() - start_time, 2)
print("4. Polyvalent Itertuples working even with special characters in the column name done in {} seconds, result = {}".format(total_elapsed_time, result))

输出:

         A   B   C   D
0       41  63  42  23
1       54   9  24  65
2       15  34  10   9
3       39  94  82  97
4        4  88  79  54
...     ..  ..  ..  ..
999995  48  27   4  25
999996  16  51  34  28
999997   1  39  61  14
999998  66  51  27  70
999999  51  53  47  99

[1000000 rows x 4 columns]

1. Iterrows done in 104.96 seconds, result = 66151519
2. Named Itertuples done in 1.26 seconds, result = 66151519
3. Itertuples done in 0.94 seconds, result = 66151519
4. Polyvalent Itertuples working even with special characters in the column name done in 2.94 seconds, result = 66151519

本文是iterrows和itertules之间的一个非常有趣的比较

您可以编写自己的迭代器来实现namedtuple

from collections import namedtuple

def myiter(d, cols=None):
    if cols is None:
        v = d.values.tolist()
        cols = d.columns.values.tolist()
    else:
        j = [d.columns.get_loc(c) for c in cols]
        v = d.values[:, j].tolist()

    n = namedtuple('MyTuple', cols)

    for line in iter(v):
        yield n(*line)

这与pd.DataFrame.itertuples直接相当。我的目标是以更高的效率执行相同的任务。


对于具有我的函数的给定数据帧:

list(myiter(df))

[MyTuple(c1=10, c2=100), MyTuple(c1=11, c2=110), MyTuple(c1=12, c2=120)]

或使用pd.DataFrame.itertuples:

list(df.itertuples(index=False))

[Pandas(c1=10, c2=100), Pandas(c1=11, c2=110), Pandas(c1=12, c2=120)]

全面测试我们测试使所有列可用并对列进行子设置。

def iterfullA(d):
    return list(myiter(d))

def iterfullB(d):
    return list(d.itertuples(index=False))

def itersubA(d):
    return list(myiter(d, ['col3', 'col4', 'col5', 'col6', 'col7']))

def itersubB(d):
    return list(d[['col3', 'col4', 'col5', 'col6', 'col7']].itertuples(index=False))

res = pd.DataFrame(
    index=[10, 30, 100, 300, 1000, 3000, 10000, 30000],
    columns='iterfullA iterfullB itersubA itersubB'.split(),
    dtype=float
)

for i in res.index:
    d = pd.DataFrame(np.random.randint(10, size=(i, 10))).add_prefix('col')
    for j in res.columns:
        stmt = '{}(d)'.format(j)
        setp = 'from __main__ import d, {}'.format(j)
        res.at[i, j] = timeit(stmt, setp, number=100)

res.groupby(res.columns.str[4:-1], axis=1).plot(loglog=True);