我有一个熊猫数据帧,df:
c1 c2
0 10 100
1 11 110
2 12 120
如何迭代此数据帧的行?对于每一行,我希望能够通过列的名称访问其元素(单元格中的值)。例如:
for row in df.rows:
print(row['c1'], row['c2'])
我发现了一个类似的问题,建议使用以下任一项:
for date, row in df.T.iteritems():
for row in df.iterrows():
但我不知道row对象是什么,以及如何使用它。
有时,有用的模式是:
# Borrowing @KutalmisB df example
df = pd.DataFrame({'col1': [1, 2], 'col2': [0.1, 0.2]}, index=['a', 'b'])
# The to_dict call results in a list of dicts
# where each row_dict is a dictionary with k:v pairs of columns:value for that row
for row_dict in df.to_dict(orient='records'):
print(row_dict)
结果是:
{'col1':1.0, 'col2':0.1}
{'col1':2.0, 'col2':0.2}
对于查看和修改值,我将使用iterrows()。在for循环中,通过使用元组解包(参见示例:i,row),我使用行仅查看值,并在需要修改值时使用i和loc方法。正如前面的回答所述,这里您不应该修改正在迭代的内容。
for i, row in df.iterrows():
df_column_A = df.loc[i, 'A']
if df_column_A == 'Old_Value':
df_column_A = 'New_value'
在这里,循环中的行是该行的副本,而不是它的视图。因此,您不应该编写类似于行['a']='New_Value'的内容,它不会修改DataFrame。但是,您可以使用i和loc并指定DataFrame来完成这项工作。