我有一个熊猫数据帧,df:

   c1   c2
0  10  100
1  11  110
2  12  120

如何迭代此数据帧的行?对于每一行,我希望能够通过列的名称访问其元素(单元格中的值)。例如:

for row in df.rows:
    print(row['c1'], row['c2'])

我发现了一个类似的问题,建议使用以下任一项:

for date, row in df.T.iteritems():
for row in df.iterrows():

但我不知道row对象是什么,以及如何使用它。


当前回答

DataFrame.iterrows是一个生成索引和行(作为一个系列)的生成器:

import pandas as pd

df = pd.DataFrame({'c1': [10, 11, 12], 'c2': [100, 110, 120]})
df = df.reset_index()  # make sure indexes pair with number of rows

for index, row in df.iterrows():
    print(row['c1'], row['c2'])
10 100
11 110
12 120

其他回答

我们有多种选择来做同样的事情,很多人都分享了他们的答案。

我发现以下两种方法既简单又有效:

DataFrame.iterrows()DataFrame.itertuples()

例子:

 import pandas as pd
 inp = [{'c1':10, 'c2':100}, {'c1':11,'c2':110}, {'c1':12,'c2':120}]
 df = pd.DataFrame(inp)
 print (df)

 # With the iterrows method

 for index, row in df.iterrows():
     print(row["c1"], row["c2"])

 # With the itertuples method

 for row in df.itertuples(index=True, name='Pandas'):
     print(row.c1, row.c2)

注意:itertples()应该比iterrows()快

在Pandas数据帧中有很多方法可以迭代行。一种非常简单直观的方法是:

df = pd.DataFrame({'A':[1, 2, 3], 'B':[4, 5, 6], 'C':[7, 8, 9]})
print(df)
for i in range(df.shape[0]):
    # For printing the second column
    print(df.iloc[i, 1])

    # For printing more than one columns
    print(df.iloc[i, [0, 2]])

可能是最优雅的解决方案(但肯定不是最有效的):

for row in df.values:
    c2 = row[1]
    print(row)
    # ...

for c1, c2 in df.values:
    # ...

注意:

文档明确建议改用.to_numpy()在最坏的情况下,生成的NumPy数组将具有适合所有列的dtype对象首先有充分的理由不使用循环

尽管如此,我认为这个选项应该包含在这里,作为一个(人们应该认为)微不足道的问题的直接解决方案。

有时循环确实比矢量化代码更好

正如这里的许多答案正确指出的那样,Pandas中的默认计划应该是编写矢量化代码(带有隐式循环),而不是自己尝试显式循环。但问题仍然是你是否应该在Pandas中编写循环,如果是的话,在这些情况下最好的循环方式是什么。

我认为,至少有一种情况下循环是合适的:当您需要以某种复杂的方式计算依赖于其他行中的值的函数时。在这种情况下,循环代码通常比矢量化代码更简单、更可读、更不易出错。

循环代码甚至可能更快,正如您将在下面看到的那样,所以在速度至关重要的情况下,循环可能是有意义的。但实际上,这些只是一些情况的子集,您可能应该首先使用numpy/numa(而不是Pandas),因为优化的numpy/noma几乎总是比Pandas更快。

让我们用一个例子来说明这一点。假设您希望获取一列的累积和,但每当其他列等于零时,将其重置:

import pandas as pd
import numpy as np

df = pd.DataFrame( { 'x':[1,2,3,4,5,6], 'y':[1,1,1,0,1,1]  } )

#   x  y  desired_result
#0  1  1               1
#1  2  1               3
#2  3  1               6
#3  4  0               4
#4  5  1               9
#5  6  1              15

这是一个很好的例子,你当然可以写一行Pandas来实现这一点,尽管它不是特别可读,特别是如果你还没有对Pandas有足够的经验:

df.groupby( (df.y==0).cumsum() )['x'].cumsum()

对于大多数情况来说,这将足够快,尽管您也可以通过避免groupby来编写更快的代码,但它可能更不可读。

或者,如果我们把它写成一个循环呢?您可以使用NumPy执行以下操作:

import numba as nb

@nb.jit(nopython=True)  # Optional
def custom_sum(x,y):
    x_sum = x.copy()
    for i in range(1,len(df)):
        if y[i] > 0: x_sum[i] = x_sum[i-1] + x[i]
    return x_sum

df['desired_result'] = custom_sum( df.x.to_numpy(), df.y.to_numpy() )

诚然,将DataFrame列转换为NumPy数组需要一些开销,但核心代码只有一行代码,即使您对Pandas或NumPy一无所知,也可以阅读:

if y[i] > 0: x_sum[i] = x_sum[i-1] + x[i]

这段代码实际上比矢量化代码更快。在一些具有100000行的快速测试中,上述方法比groupby方法快大约10倍。注意,速度的一个关键是numba,这是可选的。如果没有“@nb.jit”行,循环代码实际上比groupby方法慢大约10倍。

显然,这个示例非常简单,您可能更喜欢一行panda,而不是编写一个带有相关开销的循环。然而,对于这个问题,有更复杂的版本,NumPy/numa循环方法的可读性或速度可能是有意义的。

除了这篇文章中的好答案,我将提出“分而治之”的方法,我写这个答案并不是为了废除其他好答案,而是为了用另一种对我有效的方法来实现它们。它有两个步骤,即拆分和合并熊猫数据帧:

分裂与征服的证明:

您不需要使用矢量化或任何其他方法将数据帧的类型转换为另一种类型您不需要将代码循环化,这通常需要额外的时间在我的例子中,iterrows()和itertples()在整个数据帧上都具有相同的性能根据您对切片索引的选择,您将能够以指数方式加快迭代。索引越高,迭代过程越快。

分裂与征服的缺点:

您不应该依赖于同一数据帧和不同切片的迭代过程。这意味着,如果你想从其他切片读取或写入,那么可能很难做到这一点。

===============分而治之=================

步骤1:分割/切片

在这一步中,我们将在整个数据帧上划分迭代。假设你要将一个CSV文件读入panda df,然后对其进行迭代。在这种情况下,我有5000000条记录,我要将其拆分为100000条记录。

注意:我需要重申,正如本页其他解决方案中解释的其他运行时分析一样,在df上搜索时,“记录数”与“运行时”成指数比例。基于我的数据基准,以下是结果:

Number of records | Iteration rate [per second]
========================================
100,000           | 500
500,000           | 200
1,000,000         | 50
5,000,000         | 20

第2步:合并

这将是一个简单的步骤,只需将所有写入的CSV文件合并到一个数据帧中,然后将其写入一个更大的CSV文件。

以下是示例代码:

# Step 1 (Splitting/Slicing)
import pandas as pd
df_all = pd.read_csv('C:/KtV.csv')
df_index = 100000
df_len = len(df)
for i in range(df_len // df_index + 1):
    lower_bound = i * df_index
    higher_bound = min(lower_bound + df_index, df_len)
    # Splitting/slicing df (make sure to copy() otherwise it will be a view
    df = df_all[lower_bound:higher_bound].copy()
    '''
    Write your iteration over the sliced df here
    using iterrows() or intertuples() or ...
    '''
    # Writing into CSV files
    df.to_csv('C:/KtV_prep_' + str(i) + '.csv')



# Step 2 (Merging)
filename = 'C:/KtV_prep_'
df = (pd.read_csv(f) for f in [filename + str(i) + '.csv' for i in range(ktv_len // ktv_index + 1)])
df_prep_all = pd.concat(df)
df_prep_all.to_csv('C:/KtV_prep_all.csv')

参考:

数据流迭代的有效方法

将CSV文件连接到一个Pandas数据帧中