我想从Pandas DataFrame中获得列标题的列表。DataFrame将来自用户输入,所以我不知道有多少列或它们将被称为什么。

例如,如果我有一个这样的数据帧:

>>> my_dataframe
    y  gdp  cap
0   1    2    5
1   2    3    9
2   8    7    2
3   3    4    7
4   6    7    7
5   4    8    3
6   8    2    8
7   9    9   10
8   6    6    4
9  10   10    7

我会得到一个这样的列表:

>>> header_list
['y', 'gdp', 'cap']

当前回答

正如Simeon Visser的回答,你可以这样做

list(my_dataframe.columns.values)

or

list(my_dataframe) # For less typing.

但我认为最完美的地方是:

list(my_dataframe.columns)

它是明确的,同时不是不必要的长。

其他回答

即使之前提供的解决方案很好,我也希望像frame.column_names()这样的东西是Pandas中的一个函数,但由于它不是,也许使用下面的语法会很好。通过调用"tolist"函数,它以某种方式保留了您正在以正确的方式使用pandas的感觉:

frame.columns.tolist()

它变得更简单(由Pandas 0.16.0):

df.columns.tolist()

会给你一个很好的列表中的列名。

import pandas as pd

# create test dataframe
df = pd.DataFrame('x', columns=['A', 'B', 'C'], index=range(2))

list(df.columns)

返回

['A', 'B', 'C']

最简单的选择是: List (my_datafframe .columns)或my_datafframe .columns.tolist()

不需要上面复杂的东西:)

我做了一些快速测试,也许不出意外,使用datafframe .columns.values.tolist()的内置版本是最快的:

In [1]: %timeit [column for column in df]
1000 loops, best of 3: 81.6 µs per loop

In [2]: %timeit df.columns.values.tolist()
10000 loops, best of 3: 16.1 µs per loop

In [3]: %timeit list(df)
10000 loops, best of 3: 44.9 µs per loop

In [4]: % timeit list(df.columns.values)
10000 loops, best of 3: 38.4 µs per loop

(尽管如此,我仍然非常喜欢这个列表(数据框架),所以感谢EdChum!)