我想从Pandas DataFrame中获得列标题的列表。DataFrame将来自用户输入,所以我不知道有多少列或它们将被称为什么。

例如,如果我有一个这样的数据帧:

>>> my_dataframe
    y  gdp  cap
0   1    2    5
1   2    3    9
2   8    7    2
3   3    4    7
4   6    7    7
5   4    8    3
6   8    2    8
7   9    9   10
8   6    6    4
9  10   10    7

我会得到一个这样的列表:

>>> header_list
['y', 'gdp', 'cap']

当前回答

你可以通过以下方式获取值:

list(my_dataframe.columns.values)

你也可以简单地使用(如Ed Chum的回答所示):

list(my_dataframe)

其他回答

%%timeit
final_df.columns.values.tolist()
948 ns ± 19.2 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
%%timeit
list(final_df.columns)
14.2 µs ± 79.1 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
%%timeit
list(final_df.columns.values)
1.88 µs ± 11.7 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
%%timeit
final_df.columns.tolist()
12.3 µs ± 27.4 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
%%timeit
list(final_df.head(1).columns)
163 µs ± 20.6 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

在笔记本上

对于IPython笔记本中的数据探索,我的首选方法是:

sorted(df)

这将产生一个易于阅读的字母顺序列表。

在代码存储库中

在代码中,我发现它更明确

df.columns

因为它告诉其他阅读你代码的人你在做什么。

DataFrame遵循类似字典的约定,即遍历对象的“键”。

my_dataframe.keys()

创建一个键/列列表-对象方法to_list()和Pythonic方法:

my_dataframe.keys().to_list()
list(my_dataframe.keys())

DataFrame的基本迭代返回列标签:

[column for column in my_dataframe]

不要将DataFrame转换为列表,只是为了获得列标签。在寻找方便的代码示例时,不要停止思考。

xlarge = pd.DataFrame(np.arange(100000000).reshape(10000,10000))
list(xlarge) # Compute time and memory consumption depend on dataframe size - O(N)
list(xlarge.keys()) # Constant time operation - O(1)

它的简单代码为您:

for i in my_dataframe:
    print(i)

尽管去做

正如Simeon Visser的回答,你可以这样做

list(my_dataframe.columns.values)

or

list(my_dataframe) # For less typing.

但我认为最完美的地方是:

list(my_dataframe.columns)

它是明确的,同时不是不必要的长。