我想从Pandas DataFrame中获得列标题的列表。DataFrame将来自用户输入,所以我不知道有多少列或它们将被称为什么。
例如,如果我有一个这样的数据帧:
>>> my_dataframe
y gdp cap
0 1 2 5
1 2 3 9
2 8 7 2
3 3 4 7
4 6 7 7
5 4 8 3
6 8 2 8
7 9 9 10
8 6 6 4
9 10 10 7
我会得到一个这样的列表:
>>> header_list
['y', 'gdp', 'cap']
%%timeit
final_df.columns.values.tolist()
948 ns ± 19.2 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
%%timeit
list(final_df.columns)
14.2 µs ± 79.1 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
%%timeit
list(final_df.columns.values)
1.88 µs ± 11.7 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
%%timeit
final_df.columns.tolist()
12.3 µs ± 27.4 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
%%timeit
list(final_df.head(1).columns)
163 µs ± 20.6 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
DataFrame遵循类似字典的约定,即遍历对象的“键”。
my_dataframe.keys()
创建一个键/列列表-对象方法to_list()和Pythonic方法:
my_dataframe.keys().to_list()
list(my_dataframe.keys())
DataFrame的基本迭代返回列标签:
[column for column in my_dataframe]
不要将DataFrame转换为列表,只是为了获得列标签。在寻找方便的代码示例时,不要停止思考。
xlarge = pd.DataFrame(np.arange(100000000).reshape(10000,10000))
list(xlarge) # Compute time and memory consumption depend on dataframe size - O(N)
list(xlarge.keys()) # Constant time operation - O(1)