用c++找出质数最快的算法是什么?我已经使用了sieve的算法,但我仍然希望它更快!
当前回答
#include<iostream>
using namespace std;
void main()
{
int num,i,j,prime;
cout<<"Enter the upper limit :";
cin>>num;
cout<<"Prime numbers till "<<num<<" are :2, ";
for(i=3;i<=num;i++)
{
prime=1;
for(j=2;j<i;j++)
{
if(i%j==0)
{
prime=0;
break;
}
}
if(prime==1)
cout<<i<<", ";
}
}
其他回答
#include <iostream>
using namespace std;
int set [1000000];
int main (){
for (int i=0; i<1000000; i++){
set [i] = 0;
}
int set_size= 1000;
set [set_size];
set [0] = 2;
set [1] = 3;
int Ps = 0;
int last = 2;
cout << 2 << " " << 3 << " ";
for (int n=1; n<10000; n++){
int t = 0;
Ps = (n%2)+1+(3*n);
for (int i=0; i==i; i++){
if (set [i] == 0) break;
if (Ps%set[i]==0){
t=1;
break;
}
}
if (t==0){
cout << Ps << " ";
set [last] = Ps;
last++;
}
}
//cout << last << endl;
cout << endl;
system ("pause");
return 0;
}
如果它必须非常快,你可以包括一个质数列表: http://www.bigprimes.net/archive/prime/
如果你只想知道某个数是不是质数,维基百科上列出了各种质数判别法。它们可能是确定大数是否为质数的最快方法,特别是因为它们可以告诉你一个数是否为质数。
我最近写了这段代码来求数字的和。它可以很容易地修改,以确定一个数字是否是质数。基准测试在代码之上。
// built on core-i2 e8400
// Benchmark from PowerShell
// Measure-Command { ExeName.exe }
// Days : 0
// Hours : 0
// Minutes : 0
// Seconds : 23
// Milliseconds : 516
// Ticks : 235162598
// TotalDays : 0.00027217893287037
// TotalHours : 0.00653229438888889
// TotalMinutes : 0.391937663333333
// TotalSeconds : 23.5162598
// TotalMilliseconds : 23516.2598
// built with latest MSVC
// cl /EHsc /std:c++latest main.cpp /O2 /fp:fast /Qpar
#include <cmath>
#include <iostream>
#include <vector>
inline auto prime = [](std::uint64_t I, std::vector<std::uint64_t> &cache) -> std::uint64_t {
std::uint64_t root{static_cast<std::uint64_t>(std::sqrtl(I))};
for (std::size_t i{}; cache[i] <= root; ++i)
if (I % cache[i] == 0)
return 0;
cache.push_back(I);
return I;
};
inline auto prime_sum = [](std::uint64_t S) -> std::uint64_t {
std::uint64_t R{5};
std::vector<std::uint64_t> cache;
cache.reserve(S / 16);
cache.push_back(3);
for (std::uint64_t I{5}; I <= S; I += 8)
{
std::uint64_t U{I % 3};
if (U != 0)
R += prime(I, cache);
if (U != 1)
R += prime(I + 2, cache);
if (U != 2)
R += prime(I + 4, cache);
R += prime(I + 6, cache);
}
return R;
};
int main()
{
std::cout << prime_sum(63210123);
}
寻找因素的解决方案:
def divisors(integer):
result = set()
i = 2
j = integer/2
while(i <= j):
if integer % i == 0:
result.add(i)
#it dont need to
result.add(integer//i)
i += 1
j = integer//i
if len(result) > 0:
return f"not prime {sorted(result)}"
else:
return f"{integer} is prime"
—测试---- 导入的时间
start_time = time.time()
print(divisors(180180180180))
print("--- %s seconds ---" % (time.time() - start_time))
——0.06314539909362793秒——
start_time = time.time()
print(divs(180180180180180))
print("--- %s seconds ---" % (time.time() - start_time))
——1.5997519493103027秒——
start_time = time.time()
print(divisors(1827))
print("--- %s seconds ---" % (time.time() - start_time))
——0.0秒——
start_time = time.time()
print(divisors(104729))
print("--- %s seconds ---" % (time.time() - start_time))
——0.0秒——
下面的代码:
def divs(integer):
result = set()
i = 2
j = integer / 2
loops = 0
while (i <= j):
if integer % i == 0:
print(f"loops:{loops}")
return f"{integer} is not a prime"
i += 1
j = integer // i
loops += 1
print(f"loops:{loops}")
return f"{integer} is prime"
——测试——
start_time = time.time()
print(divs(180180180180180180180180))
print("--- %s seconds ---" % (time.time() - start_time))
——0.0秒——
一个非常快速的Atkin Sieve的实现是Dan Bernstein的primegen。这个筛子比埃拉托色尼的筛子更有效率。他的页面有一些基准测试信息。