用c++找出质数最快的算法是什么?我已经使用了sieve的算法,但我仍然希望它更快!
当前回答
#include<iostream>
using namespace std;
void main()
{
int num,i,j,prime;
cout<<"Enter the upper limit :";
cin>>num;
cout<<"Prime numbers till "<<num<<" are :2, ";
for(i=3;i<=num;i++)
{
prime=1;
for(j=2;j<i;j++)
{
if(i%j==0)
{
prime=0;
break;
}
}
if(prime==1)
cout<<i<<", ";
}
}
其他回答
我总是用这种方法来计算筛子算法后面的质数。
void primelist()
{
for(int i = 4; i < pr; i += 2) mark[ i ] = false;
for(int i = 3; i < pr; i += 2) mark[ i ] = true; mark[ 2 ] = true;
for(int i = 3, sq = sqrt( pr ); i < sq; i += 2)
if(mark[ i ])
for(int j = i << 1; j < pr; j += i) mark[ j ] = false;
prime[ 0 ] = 2; ind = 1;
for(int i = 3; i < pr; i += 2)
if(mark[ i ]) ind++; printf("%d\n", ind);
}
i wrote it today in C,compiled with tcc, figured out during preparation of compititive exams several years back. don't know if anyone already have wrote it alredy. it really fast(but you should decide whether it is fast or not). took one or two minuts to findout about 1,00,004 prime numbers between 10 and 1,00,00,000 on i7 processor with average 32% CPU use. as you know, only those can be prime which have last digit either 1,3,7 or 9 and to check if that number is prime or not, you have to divide that number by previously found prime numbers only. so first take group of four number = {1,3,7,9}, test it by dividing by known prime numbers, if reminder is non zero then number is prime, add it to prime number array. then add 10 to group so it becomes {11,13,17,19} and repeat the process.
#include <stdio.h>
int main() {
int nums[4]={1,3,7,9};
int primes[100000];
primes[0]=2;
primes[1]=3;
primes[2]=5;
primes[3]=7;
int found = 4;
int got = 1;
int m=0;
int upto = 1000000;
for(int i=0;i<upto;i++){
//printf("iteration number: %d\n",i);
for(int j=0;j<4;j++){
m = nums[j]+10;
//printf("m = %d\n",m);
nums[j] = m;
got = 1;
for(int k=0;k<found;k++){
//printf("testing with %d\n",primes[k]);
if(m%primes[k]==0){
got = 0;
//printf("%d failed for %d\n",m,primes[k]);
break;
}
}
if(got==1){
//printf("got new prime: %d\n",m);
primes[found]= m;
found++;
}
}
}
printf("found total %d prime numbers between 1 and %d",found,upto*10);
return 0;
}
我最近写了这段代码来求数字的和。它可以很容易地修改,以确定一个数字是否是质数。基准测试在代码之上。
// built on core-i2 e8400
// Benchmark from PowerShell
// Measure-Command { ExeName.exe }
// Days : 0
// Hours : 0
// Minutes : 0
// Seconds : 23
// Milliseconds : 516
// Ticks : 235162598
// TotalDays : 0.00027217893287037
// TotalHours : 0.00653229438888889
// TotalMinutes : 0.391937663333333
// TotalSeconds : 23.5162598
// TotalMilliseconds : 23516.2598
// built with latest MSVC
// cl /EHsc /std:c++latest main.cpp /O2 /fp:fast /Qpar
#include <cmath>
#include <iostream>
#include <vector>
inline auto prime = [](std::uint64_t I, std::vector<std::uint64_t> &cache) -> std::uint64_t {
std::uint64_t root{static_cast<std::uint64_t>(std::sqrtl(I))};
for (std::size_t i{}; cache[i] <= root; ++i)
if (I % cache[i] == 0)
return 0;
cache.push_back(I);
return I;
};
inline auto prime_sum = [](std::uint64_t S) -> std::uint64_t {
std::uint64_t R{5};
std::vector<std::uint64_t> cache;
cache.reserve(S / 16);
cache.push_back(3);
for (std::uint64_t I{5}; I <= S; I += 8)
{
std::uint64_t U{I % 3};
if (U != 0)
R += prime(I, cache);
if (U != 1)
R += prime(I + 2, cache);
if (U != 2)
R += prime(I + 4, cache);
R += prime(I + 6, cache);
}
return R;
};
int main()
{
std::cout << prime_sum(63210123);
}
I found this solution pretty fast but it comes with consequences, So this is called Fermat's Little Theorem. If we take any number p and put that in (1^p)-1 or (2^p)-2...(n^p)-n likewise and the number we get is divisible by p then it's a prime number. Talking about consequences, it's not 100% right solution. There are some numbers like 341(not prime) it will pass the test with (2^341)-2 but fails on (3^341)-3, so it's called a composite number. We can have two or more checks to make sure they pass all of them. There is one more kind of number which are not prime but also pass all the test case:( 561, 1729 Ramanujan taxi no etc.
好消息是:在前250亿个数字中,只有2183不符合这个要求 的情况。
#include <iostream>
#include <math.h>
using namespace std;
int isPrime(int p)
{
int tc = pow(2, p) - 2;
if (tc % p == 0)
{
cout << p << "is Prime ";
}
else
{
cout << p << "is Not Prime";
}
return 0;
}
int main()
{
int p;
cin >> p;
isPrime(p);
return 0;
}
#include<stdio.h>
main()
{
long long unsigned x,y,b,z,e,r,c;
scanf("%llu",&x);
if(x<2)return 0;
scanf("%llu",&y);
if(y<x)return 0;
if(x==2)printf("|2");
if(x%2==0)x+=1;
if(y%2==0)y-=1;
for(b=x;b<=y;b+=2)
{
z=b;e=0;
for(c=2;c*c<=z;c++)
{
if(z%c==0)e++;
if(e>0)z=3;
}
if(e==0)
{
printf("|%llu",z);
r+=1;
}
}
printf("|\n%llu outputs...\n",r);
scanf("%llu",&r);
}