用c++找出质数最快的算法是什么?我已经使用了sieve的算法,但我仍然希望它更快!
当前回答
另一个Python实现比死亡面具推销员的答案更直接,也更快:
import numpy as np
def prime_numbers(limit: int) -> list[int]:
"""Provide a list of all prime numbers <= the limit."""
is_prime = np.full((limit + 1, ), True)
is_prime[0:2] = False
for n in range(2, limit + 1):
if is_prime[n]:
is_prime[n**2::n] = False
return list(np.where(is_prime)[0])
你可以进一步优化,例如,排除2,或者硬编码更多质数,但我想保持简单。
*示例运行时比较(注意:我使用了其他实现的优化形式,见我的评论):
其他回答
我会让你决定这是不是最快的。
using System;
namespace PrimeNumbers
{
public static class Program
{
static int primesCount = 0;
public static void Main()
{
DateTime startingTime = DateTime.Now;
RangePrime(1,1000000);
DateTime endingTime = DateTime.Now;
TimeSpan span = endingTime - startingTime;
Console.WriteLine("span = {0}", span.TotalSeconds);
}
public static void RangePrime(int start, int end)
{
for (int i = start; i != end+1; i++)
{
bool isPrime = IsPrime(i);
if(isPrime)
{
primesCount++;
Console.WriteLine("number = {0}", i);
}
}
Console.WriteLine("primes count = {0}",primesCount);
}
public static bool IsPrime(int ToCheck)
{
if (ToCheck == 2) return true;
if (ToCheck < 2) return false;
if (IsOdd(ToCheck))
{
for (int i = 3; i <= (ToCheck / 3); i += 2)
{
if (ToCheck % i == 0) return false;
}
return true;
}
else return false; // even numbers(excluding 2) are composite
}
public static bool IsOdd(int ToCheck)
{
return ((ToCheck % 2 != 0) ? true : false);
}
}
}
在我使用2.40 GHz处理器的酷睿2 Duo笔记本电脑上,查找并打印1到1,000,000范围内的质数大约需要82秒。它找到了78,498个质数。
#include <iostream>
using namespace std;
int set [1000000];
int main (){
for (int i=0; i<1000000; i++){
set [i] = 0;
}
int set_size= 1000;
set [set_size];
set [0] = 2;
set [1] = 3;
int Ps = 0;
int last = 2;
cout << 2 << " " << 3 << " ";
for (int n=1; n<10000; n++){
int t = 0;
Ps = (n%2)+1+(3*n);
for (int i=0; i==i; i++){
if (set [i] == 0) break;
if (Ps%set[i]==0){
t=1;
break;
}
}
if (t==0){
cout << Ps << " ";
set [last] = Ps;
last++;
}
}
//cout << last << endl;
cout << endl;
system ("pause");
return 0;
}
这是我一直在玩的埃拉托色尼筛子的Python实现。
def eratosthenes(maximum: int) -> list[int | None]:
"""
Find all the prime numbers between 2 and `maximum`.
Args:
maximum: The maximum number to check.
Returns:
A list of primes between 2 and `maximum`.
"""
if maximum < 2:
return []
# Discard even numbers by default.
sequence = dict.fromkeys(range(3, maximum+1, 2), True)
for num, is_prime in sequence.items():
# Already filtered, let's skip it.
if not is_prime:
continue
# Avoid marking the same number twice.
for num2 in range(num ** 2, maximum+1, num):
# Here, `num2` might contain an even number - skip it.
if num2 in sequence:
sequence[num2] = False
# Re-add 2 as prime and filter out the composite numbers.
return [2] + [num for num, is_prime in sequence.items() if is_prime]
在一台简陋的三星Galaxy A40上,该代码大约需要16秒才能输入10000000个数字。
欢迎提出建议!
#include<iostream>
using namespace std;
void main()
{
int num,i,j,prime;
cout<<"Enter the upper limit :";
cin>>num;
cout<<"Prime numbers till "<<num<<" are :2, ";
for(i=3;i<=num;i++)
{
prime=1;
for(j=2;j<i;j++)
{
if(i%j==0)
{
prime=0;
break;
}
}
if(prime==1)
cout<<i<<", ";
}
}
我总是用这种方法来计算筛子算法后面的质数。
void primelist()
{
for(int i = 4; i < pr; i += 2) mark[ i ] = false;
for(int i = 3; i < pr; i += 2) mark[ i ] = true; mark[ 2 ] = true;
for(int i = 3, sq = sqrt( pr ); i < sq; i += 2)
if(mark[ i ])
for(int j = i << 1; j < pr; j += i) mark[ j ] = false;
prime[ 0 ] = 2; ind = 1;
for(int i = 3; i < pr; i += 2)
if(mark[ i ]) ind++; printf("%d\n", ind);
}