用c++找出质数最快的算法是什么?我已经使用了sieve的算法,但我仍然希望它更快!


当前回答

另一个Python实现比死亡面具推销员的答案更直接,也更快:

import numpy as np

def prime_numbers(limit: int) -> list[int]:
    """Provide a list of all prime numbers <= the limit."""
    is_prime = np.full((limit + 1, ), True)
    is_prime[0:2] = False
    for n in range(2, limit + 1):
        if is_prime[n]:
            is_prime[n**2::n] = False
    return list(np.where(is_prime)[0])

你可以进一步优化,例如,排除2,或者硬编码更多质数,但我想保持简单。


*示例运行时比较(注意:我使用了其他实现的优化形式,见我的评论):

其他回答

寻找因素的解决方案:

def divisors(integer):
    result = set()
    i = 2
    j = integer/2
    while(i <= j):
        if integer % i == 0:
            result.add(i)
            #it dont need to 
            result.add(integer//i)
        i += 1
        j = integer//i
    if len(result) > 0:
        return f"not  prime {sorted(result)}"
    else:
        return f"{integer} is prime"

—测试---- 导入的时间

start_time = time.time()
print(divisors(180180180180))
print("--- %s seconds ---" % (time.time() - start_time))

——0.06314539909362793秒——

start_time = time.time()
print(divs(180180180180180))
print("--- %s seconds ---" % (time.time() - start_time))

——1.5997519493103027秒——

start_time = time.time()
print(divisors(1827))
print("--- %s seconds ---" % (time.time() - start_time))

——0.0秒——

start_time = time.time()
print(divisors(104729))
print("--- %s seconds ---" % (time.time() - start_time))

——0.0秒——

下面的代码:

def divs(integer):
    result = set()
    i = 2
    j = integer / 2
    loops = 0
    while (i <= j):
        if integer % i == 0:
            print(f"loops:{loops}")
            return f"{integer} is not a prime"
        i += 1
        j = integer // i
        loops += 1
    print(f"loops:{loops}")
    
    return f"{integer} is prime"

——测试——

start_time = time.time()
print(divs(180180180180180180180180))
print("--- %s seconds ---" % (time.time() - start_time))

——0.0秒——

这是找到从1到n的所有质数的最快算法(在我的电脑上,它只花了0.004秒就找到了从1到1000000的所有质数)。

#include <iostream>
#include <fstream>

using namespace std;

double FindPrime(bool* array, int size){
clock_t start;
double runtime;
for (int i = 2; i < size; i++)
    array[i] = true;
start = clock();
for (int i = 2; i <= size; i++)
    if (array[i])
        for (int j = 2 * i; j < size; j += i)
            array[j] = false;
runtime = (double)(clock() - start) / CLOCKS_PER_SEC;
return runtime;
}


int main() {
ofstream fout("prime.txt");
int n = 0;
cout << "Enter the upper limit of prime numbers searching algorithm:";
cin >> n;
bool* array = new bool[n + 1];
double duration = FindPrime(array, n + 1);
printf("\n%f seconds.\n", duration);
for (int i = 2; i <= n; i++)
    if (array[i])
        fout << i << endl;
fout.close();

return 0;
}

我会让你决定这是不是最快的。

using System;
namespace PrimeNumbers
{

public static class Program
{
    static int primesCount = 0;


    public static void Main()
    {
        DateTime startingTime = DateTime.Now;

        RangePrime(1,1000000);   

        DateTime endingTime = DateTime.Now;

        TimeSpan span = endingTime - startingTime;

        Console.WriteLine("span = {0}", span.TotalSeconds);

    }


    public static void RangePrime(int start, int end)
    {
        for (int i = start; i != end+1; i++)
        {
            bool isPrime = IsPrime(i);
            if(isPrime)
            {
                primesCount++;
                Console.WriteLine("number = {0}", i);
            }
        }
        Console.WriteLine("primes count = {0}",primesCount);
    }



    public static bool IsPrime(int ToCheck)
    {

        if (ToCheck == 2) return true;
        if (ToCheck < 2) return false;


        if (IsOdd(ToCheck))
        {
            for (int i = 3; i <= (ToCheck / 3); i += 2)
            {
                if (ToCheck % i == 0) return false;
            }
            return true;
        }
        else return false; // even numbers(excluding 2) are composite
    }

    public static bool IsOdd(int ToCheck)
    {
        return ((ToCheck % 2 != 0) ? true : false);
    }
}
}

在我使用2.40 GHz处理器的酷睿2 Duo笔记本电脑上,查找并打印1到1,000,000范围内的质数大约需要82秒。它找到了78,498个质数。

我总是用这种方法来计算筛子算法后面的质数。

void primelist()
 {
   for(int i = 4; i < pr; i += 2) mark[ i ] = false;
   for(int i = 3; i < pr; i += 2) mark[ i ] = true; mark[ 2 ] = true;
   for(int i = 3, sq = sqrt( pr ); i < sq; i += 2)
       if(mark[ i ])
          for(int j = i << 1; j < pr; j += i) mark[ j ] = false;
  prime[ 0 ] = 2; ind = 1;
  for(int i = 3; i < pr; i += 2)
    if(mark[ i ]) ind++; printf("%d\n", ind);
 }
#include <iostream>

using namespace std;

int set [1000000];

int main (){

    for (int i=0; i<1000000; i++){
        set [i] = 0;
    }
    int set_size= 1000;
    set [set_size];
    set [0] = 2;
    set [1] = 3;
    int Ps = 0;
    int last = 2;

    cout << 2 << " " << 3 << " ";

    for (int n=1; n<10000; n++){
        int t = 0;
        Ps = (n%2)+1+(3*n);
        for (int i=0; i==i; i++){
            if (set [i] == 0) break;
            if (Ps%set[i]==0){
                t=1;
                break;
            }
        }
        if (t==0){
            cout << Ps << " ";
            set [last] = Ps;
            last++;
        }
    }
    //cout << last << endl;


    cout << endl;

    system ("pause");
    return 0;
}