用c++找出质数最快的算法是什么?我已经使用了sieve的算法,但我仍然希望它更快!


当前回答

我会让你决定这是不是最快的。

using System;
namespace PrimeNumbers
{

public static class Program
{
    static int primesCount = 0;


    public static void Main()
    {
        DateTime startingTime = DateTime.Now;

        RangePrime(1,1000000);   

        DateTime endingTime = DateTime.Now;

        TimeSpan span = endingTime - startingTime;

        Console.WriteLine("span = {0}", span.TotalSeconds);

    }


    public static void RangePrime(int start, int end)
    {
        for (int i = start; i != end+1; i++)
        {
            bool isPrime = IsPrime(i);
            if(isPrime)
            {
                primesCount++;
                Console.WriteLine("number = {0}", i);
            }
        }
        Console.WriteLine("primes count = {0}",primesCount);
    }



    public static bool IsPrime(int ToCheck)
    {

        if (ToCheck == 2) return true;
        if (ToCheck < 2) return false;


        if (IsOdd(ToCheck))
        {
            for (int i = 3; i <= (ToCheck / 3); i += 2)
            {
                if (ToCheck % i == 0) return false;
            }
            return true;
        }
        else return false; // even numbers(excluding 2) are composite
    }

    public static bool IsOdd(int ToCheck)
    {
        return ((ToCheck % 2 != 0) ? true : false);
    }
}
}

在我使用2.40 GHz处理器的酷睿2 Duo笔记本电脑上,查找并打印1到1,000,000范围内的质数大约需要82秒。它找到了78,498个质数。

其他回答

如果它必须非常快,你可以包括一个质数列表: http://www.bigprimes.net/archive/prime/

如果你只想知道某个数是不是质数,维基百科上列出了各种质数判别法。它们可能是确定大数是否为质数的最快方法,特别是因为它们可以告诉你一个数是否为质数。

我会让你决定这是不是最快的。

using System;
namespace PrimeNumbers
{

public static class Program
{
    static int primesCount = 0;


    public static void Main()
    {
        DateTime startingTime = DateTime.Now;

        RangePrime(1,1000000);   

        DateTime endingTime = DateTime.Now;

        TimeSpan span = endingTime - startingTime;

        Console.WriteLine("span = {0}", span.TotalSeconds);

    }


    public static void RangePrime(int start, int end)
    {
        for (int i = start; i != end+1; i++)
        {
            bool isPrime = IsPrime(i);
            if(isPrime)
            {
                primesCount++;
                Console.WriteLine("number = {0}", i);
            }
        }
        Console.WriteLine("primes count = {0}",primesCount);
    }



    public static bool IsPrime(int ToCheck)
    {

        if (ToCheck == 2) return true;
        if (ToCheck < 2) return false;


        if (IsOdd(ToCheck))
        {
            for (int i = 3; i <= (ToCheck / 3); i += 2)
            {
                if (ToCheck % i == 0) return false;
            }
            return true;
        }
        else return false; // even numbers(excluding 2) are composite
    }

    public static bool IsOdd(int ToCheck)
    {
        return ((ToCheck % 2 != 0) ? true : false);
    }
}
}

在我使用2.40 GHz处理器的酷睿2 Duo笔记本电脑上,查找并打印1到1,000,000范围内的质数大约需要82秒。它找到了78,498个质数。

#include <iostream>

using namespace std;

int set [1000000];

int main (){

    for (int i=0; i<1000000; i++){
        set [i] = 0;
    }
    int set_size= 1000;
    set [set_size];
    set [0] = 2;
    set [1] = 3;
    int Ps = 0;
    int last = 2;

    cout << 2 << " " << 3 << " ";

    for (int n=1; n<10000; n++){
        int t = 0;
        Ps = (n%2)+1+(3*n);
        for (int i=0; i==i; i++){
            if (set [i] == 0) break;
            if (Ps%set[i]==0){
                t=1;
                break;
            }
        }
        if (t==0){
            cout << Ps << " ";
            set [last] = Ps;
            last++;
        }
    }
    //cout << last << endl;


    cout << endl;

    system ("pause");
    return 0;
}

这是我一直在玩的埃拉托色尼筛子的Python实现。

def eratosthenes(maximum: int) -> list[int | None]:
    """
    Find all the prime numbers between 2 and `maximum`.

    Args:
        maximum: The maximum number to check.

    Returns:
        A list of primes between 2 and `maximum`.
    """

    if maximum < 2:
        return []

    # Discard even numbers by default.
    sequence = dict.fromkeys(range(3, maximum+1, 2), True)

    for num, is_prime in sequence.items():
        # Already filtered, let's skip it.
        if not is_prime:
            continue

        # Avoid marking the same number twice.
        for num2 in range(num ** 2, maximum+1, num):
            # Here, `num2` might contain an even number - skip it.
            if num2 in sequence:
                sequence[num2] = False

    # Re-add 2 as prime and filter out the composite numbers.
    return [2] + [num for num, is_prime in sequence.items() if is_prime]

在一台简陋的三星Galaxy A40上,该代码大约需要16秒才能输入10000000个数字。

欢迎提出建议!

一个非常快速的Atkin Sieve的实现是Dan Bernstein的primegen。这个筛子比埃拉托色尼的筛子更有效率。他的页面有一些基准测试信息。