给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

function rand7() {
    while (true) { //lowest base 5 random number > 7 reduces memory
        int num = (rand5()-1)*5 + rand5()-1;
    if (num < 21)  // improves performance
        return 1 + num%7;
    }
}

Python代码:

from random import randint
def rand7():
    while(True):
        num = (randint(1, 5)-1)*5 + randint(1, 5)-1
        if num < 21:
                return 1 + num%7

100000次运行的测试分布:

>>> rnums = []
>>> for _ in range(100000):
    rnums.append(rand7())
>>> {n:rnums.count(n) for n in set(rnums)}
{1: 15648, 2: 15741, 3: 15681, 4: 15847, 5: 15642, 6: 15806, 7: 15635}

其他回答

这里是我的一般实现,在给定一个范围为[0,B-1]的均匀发生器的情况下,生成范围为[0,N-1]的均匀。

public class RandomUnif {

    public static final int BASE_NUMBER = 5;

    private static Random rand = new Random();

    /** given generator, returns uniform integer in the range 0.. BASE_NUMBER-1
    public static int randomBASE() {
        return rand.nextInt(BASE_NUMBER);
    }

    /** returns uniform integer in the range 0..n-1 using randomBASE() */
    public static int randomUnif(int n) {
        int rand, factor;
        if( n <= 1 ) return 0;
        else if( n == BASE_NUMBER ) return randomBASE();
        if( n < BASE_NUMBER ) {
            factor = BASE_NUMBER / n;
            do
                rand = randomBASE() / factor;
            while(rand >= n);
            return rand;
        } else {
            factor = (n - 1) / BASE_NUMBER + 1;
            do {
                rand = factor * randomBASE() + randomUnif(factor);
            } while(rand >= n);
            return rand;
        }
    }
}

不是特别高效,但一般和紧凑。对基生成器的均值调用:

 n  calls
 2  1.250 
 3  1.644 
 4  1.252 
 5  1.000 
 6  3.763 
 7  3.185 
 8  2.821 
 9  2.495 
10  2.250 
11  3.646 
12  3.316 
13  3.060 
14  2.853 
15  2.650 
16  2.814 
17  2.644 
18  2.502 
19  2.361 
20  2.248 
21  2.382 
22  2.277 
23  2.175 
24  2.082 
25  2.000 
26  5.472 
27  5.280 
28  5.119 
29  4.899 

这个怎么样

rand5 () % + rand5 (2) + 2 (2) % + rand5 rand5 () (2) % + rand5 % + rand5 (2) 2

不确定这是均匀分布的。有什么建议吗?

只要没有剩下7种可能性,就再画一个随机数,将可能性数乘以5。在Perl中:

$num = 0;
$possibilities = 1;

sub rand7
{
  while( $possibilities < 7 )
  {
    $num = $num * 5 + int(rand(5));
    $possibilities *= 5;
  }
  my $result = $num % 7;
  $num = int( $num / 7 );
  $possibilities /= 7;
  return $result;
}

(我剽窃了亚当·罗森菲尔德的答案,使其运行速度提高了7%左右。)

假设rand5()返回分布相等的{0,1,2,3,4}中的一个,目标是返回分布相等的{0,1,2,3,4,5,6}。

int rand7() {
  i = 5 * rand5() + rand5();
  max = 25;
  //i is uniform among {0 ... max-1}
  while(i < max%7) {
    //i is uniform among {0 ... (max%7 - 1)}
    i *= 5;
    i += rand5(); //i is uniform {0 ... (((max%7)*5) - 1)}
    max %= 7;
    max *= 5; //once again, i is uniform among {0 ... max-1}
  }
  return(i%7);
}

我们在跟踪这个循环在变量max中所能产生的最大值。如果到目前为止的结果在max%7和max-1之间,那么结果将均匀分布在该范围内。如果不是,则使用余数,余数是0到max%7-1之间的随机数,然后再次调用rand()来生成一个新的数字和一个新的max。然后我们重新开始。

编辑:在这个方程中,期望调用rand5()的次数是x:

x =  2     * 21/25
   + 3     *  4/25 * 14/20
   + 4     *  4/25 *  6/20 * 28/30
   + 5     *  4/25 *  6/20 *  2/30 * 7/10
   + 6     *  4/25 *  6/20 *  2/30 * 3/10 * 14/15
   + (6+x) *  4/25 *  6/20 *  2/30 * 3/10 *  1/15
x = about 2.21 calls to rand5()

这是我在看过别人的答案后得出的最简单的答案:

def r5tor7():
    while True:
        cand = (5 * r5()) + r5()
        if cand < 27:
            return cand

Cand在[6,27]范围内,如果r5()的可能结果是均匀分布的,则可能结果是均匀分布的。你可以用下面的代码来测试我的答案:

from collections import defaultdict

def r5_outcome(n):
    if not n:
        yield []
    else:
        for i in range(1, 6):
            for j in r5_outcome(n-1):
                yield [i] + j

def test_r7():
    d = defaultdict(int)
    for x in r5_outcome(2):
        s = sum([x[i] * 5**i for i in range(len(x))])
        if s < 27:
            d[s] += 1
    print len(d), d

R5_outcome(2)生成r5()结果的所有可能组合。我使用与解决方案代码中相同的筛选器进行测试。你可以看到所有的结果都是相等的,因为它们有相同的值。