给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
我觉得你们都想多了。难道这个简单的解决方案行不通吗?
int rand7(void)
{
static int startpos = 0;
startpos = (startpos+5) % (5*7);
return (((startpos + rand5()-1)%7)+1);
}
其他回答
这个怎么样
rand5 () % + rand5 (2) + 2 (2) % + rand5 rand5 () (2) % + rand5 % + rand5 (2) 2
不确定这是均匀分布的。有什么建议吗?
这类似于@RobMcAfee,除了我使用魔术数字而不是2维数组。
int rand7() {
int m = 1203068;
int r = (m >> (rand5() - 1) * 5 + rand5() - 1) & 7;
return (r > 0) ? r : rand7();
}
PHP解决方案
<?php
function random_5(){
return rand(1,5);
}
function random_7(){
$total = 0;
for($i=0;$i<7;$i++){
$total += random_5();
}
return ($total%7)+1;
}
echo random_7();
?>
这个解决方案受到了Rob McAfee的启发。 然而,它不需要循环,结果是一个均匀分布:
// Returns 1-5
var rnd5 = function(){
return parseInt(Math.random() * 5, 10) + 1;
}
// Helper
var lastEdge = 0;
// Returns 1-7
var rnd7 = function () {
var map = [
[ 1, 2, 3, 4, 5 ],
[ 6, 7, 1, 2, 3 ],
[ 4, 5, 6, 7, 1 ],
[ 2, 3, 4, 5, 6 ],
[ 7, 0, 0, 0, 0 ]
];
var result = map[rnd5() - 1][rnd5() - 1];
if (result > 0) {
return result;
}
lastEdge++;
if (lastEdge > 7 ) {
lastEdge = 1;
}
return lastEdge;
};
// Test the a uniform distribution
results = {}; for(i=0; i < 700000;i++) { var rand = rnd7(); results[rand] = results[rand] ? results[rand] + 1 : 1;}
console.log(results)
结果:[1:99560,2:99932,3:100355,4:100262,5:99603,6:100062,7:100226]
js小提琴
int rand7() {
int value = rand5()
+ rand5() * 2
+ rand5() * 3
+ rand5() * 4
+ rand5() * 5
+ rand5() * 6;
return value%7;
}
与选定的解决方案不同,该算法将在常数时间内运行。然而,它对rand5的调用比所选解决方案的平均运行时间多2次。
请注意,这个生成器并不完美(数字0比任何其他数字都有0.0064%的可能性),但对于大多数实际目的,保证恒定的时间可能比这种不准确性更重要。
解释
这个解源于数字15624能被7整除的事实,因此,如果我们可以随机且均匀地生成从0到15624的数字,然后对7取余,我们就可以得到一个近乎均匀的rand7生成器。将rand5滚动6次,将0到15624之间的数字统一生成,并使用这些数字组成以5为基数的数字,如下所示:
rand5 * 5^5 + rand5 * 5^4 + rand5 * 5^3 + rand5 * 5^2 + rand5 * 5 + rand5
mod 7的属性允许我们稍微简化一下方程:
5^5 = 3 mod 7
5^4 = 2 mod 7
5^3 = 6 mod 7
5^2 = 4 mod 7
5^1 = 5 mod 7
So
rand5 * 5^5 + rand5 * 5^4 + rand5 * 5^3 + rand5 * 5^2 + rand5 * 5 + rand5
就变成了
rand5 * 3 + rand5 * 2 + rand5 * 6 + rand5 * 4 + rand5 * 5 + rand5
理论
15624这个数字不是随机选择的,而是可以用费马小定理来发现的,该定理指出,如果p是质数,那么
a^(p-1) = 1 mod p
这就得到,
(5^6)-1 = 0 mod 7
(5^6)-1等于
4 * 5^5 + 4 * 5^4 + 4 * 5^3 + 4 * 5^2 + 4 * 5 + 4
这是一个以5为底的数,因此我们可以看到,这种方法可以用于从任何随机数发生器到任何其他随机数发生器。尽管在使用指数p-1时总是会引入对0的小偏差。
为了更准确地推广这种方法,我们可以有这样一个函数:
def getRandomconverted(frm, to):
s = 0
for i in range(to):
s += getRandomUniform(frm)*frm**i
mx = 0
for i in range(to):
mx = (to-1)*frm**i
mx = int(mx/to)*to # maximum value till which we can take mod
if s < mx:
return s%to
else:
return getRandomconverted(frm, to)