我想证明一个GUID在一个简单的测试程序中不是唯一的。 我原以为下面的代码会运行几个小时,但它不起作用。我该怎么做呢?

BigInteger begin = new BigInteger((long)0);
BigInteger end = new BigInteger("340282366920938463463374607431768211456",10);  //2^128
for(begin; begin<end; begin++)
  Console.WriteLine(System.Guid.NewGuid().ToString());

我用的是c#。


当前回答

但你必须确保你有一个副本,还是你只关心是否有一个副本。为了确保有两个人生日相同,你需要366个人(不包括闰年)。如果有超过50%的概率有两个人同一天生日,你只需要23个人。这就是生日问题。

如果你有32位,你只需要77163个值就有超过50%的重复几率。试试吧:

Random baseRandom = new Random(0);

int DuplicateIntegerTest(int interations)
{
    Random r = new Random(baseRandom.Next());
    int[] ints = new int[interations];
    for (int i = 0; i < ints.Length; i++)
    {
        ints[i] = r.Next();
    }
    Array.Sort(ints);
    for (int i = 1; i < ints.Length; i++)
    {
        if (ints[i] == ints[i - 1])
            return 1;
    }
    return 0;
}

void DoTest()
{
    baseRandom = new Random(0);
    int count = 0;
    int duplicates = 0;
    for (int i = 0; i < 1000; i++)
    {
        count++;
        duplicates += DuplicateIntegerTest(77163);
    }
    Console.WriteLine("{0} iterations had {1} with duplicates", count, duplicates);
}

1000 iterations had 737 with duplicates

现在128位已经很多了,所以你仍然在谈论大量的物品,但碰撞的几率很低。对于给定的概率,您需要使用近似值获得以下记录数:

碰撞发生的概率是1/1000 217亿亿亿,50%的几率发生碰撞 396亿亿,90%的碰撞概率

每年大约发送1E14封电子邮件,所以在这个水平上大约需要40万年,你才能有90%的机会拥有两个具有相同GUID的电子邮件,但这与说你需要运行宇宙年龄830亿倍的计算机或太阳变冷才能找到副本有很大不同。

其他回答

任何两个guid都很可能是唯一的(不相等)。

看看这个SO条目,来自维基百科

而每个生成的GUID不是 保证是唯一的,总数 唯一键数(2^128或 3.4×10^38)是如此之大,以至于相同数字的概率为 生成两次是非常小的。为 例子,考虑可观测 宇宙,其中包含约5×10^22 星星;每颗恒星都有可能 6.8×10^15个通用唯一的guid。

所以你可能还要再等几十亿年,希望在我们所知道的宇宙结束之前,你能击中一个。

如果你担心独特性,你可以购买新的guid,这样你就可以扔掉旧的guid。如果你愿意,我可以把一些放在易趣网上。

这个程序虽然有错误,但证明了GUID不是唯一的。那些试图证明相反情况的人没有抓住重点。这句话只是证明了一些GUID变体的弱实现。

GUID在定义上不一定是唯一的,它在定义上是高度唯一的。你刚才精炼了高度的意思。根据版本、实现者(MS或其他)、虚拟机的使用等不同,您的定义会发生很大变化。(见前文链接)

你可以缩短你的128位表来证明你的观点。最好的解决方案是使用哈希公式来缩短重复的表,然后在哈希发生冲突时使用完整的值,并基于此重新生成一个GUID。如果从不同的位置运行,则将哈希/完整密钥对存储在一个中心位置。

Ps:如果目标只是生成x个不同的值,那么创建一个这个宽度的哈希表,并检查哈希值。

数到2^128,雄心勃勃。

让我们想象一下,每台机器每秒可以计算2^32个id——不是那么雄心勃勃,因为它甚至不到每秒43亿个。让我们用2^32台机器来完成这个任务。此外,让2^32个文明各自投入相同的资源来完成任务。

到目前为止,我们每秒可以计数2^96个id,这意味着我们将计数2^32秒(136年多一点)。

现在,我们所需要的是获得4294967296个文明,每个文明都有4294967296台机器,每台机器每秒能计算4294967296个id,在未来136年左右的时间里,纯粹是为了这项任务——我建议我们现在就开始这项基本任务;-)

但你必须确保你有一个副本,还是你只关心是否有一个副本。为了确保有两个人生日相同,你需要366个人(不包括闰年)。如果有超过50%的概率有两个人同一天生日,你只需要23个人。这就是生日问题。

如果你有32位,你只需要77163个值就有超过50%的重复几率。试试吧:

Random baseRandom = new Random(0);

int DuplicateIntegerTest(int interations)
{
    Random r = new Random(baseRandom.Next());
    int[] ints = new int[interations];
    for (int i = 0; i < ints.Length; i++)
    {
        ints[i] = r.Next();
    }
    Array.Sort(ints);
    for (int i = 1; i < ints.Length; i++)
    {
        if (ints[i] == ints[i - 1])
            return 1;
    }
    return 0;
}

void DoTest()
{
    baseRandom = new Random(0);
    int count = 0;
    int duplicates = 0;
    for (int i = 0; i < 1000; i++)
    {
        count++;
        duplicates += DuplicateIntegerTest(77163);
    }
    Console.WriteLine("{0} iterations had {1} with duplicates", count, duplicates);
}

1000 iterations had 737 with duplicates

现在128位已经很多了,所以你仍然在谈论大量的物品,但碰撞的几率很低。对于给定的概率,您需要使用近似值获得以下记录数:

碰撞发生的概率是1/1000 217亿亿亿,50%的几率发生碰撞 396亿亿,90%的碰撞概率

每年大约发送1E14封电子邮件,所以在这个水平上大约需要40万年,你才能有90%的机会拥有两个具有相同GUID的电子邮件,但这与说你需要运行宇宙年龄830亿倍的计算机或太阳变冷才能找到副本有很大不同。