当我们必须预测分类(或离散)结果的值时,我们使用逻辑回归。我相信我们使用线性回归来预测给定输入值的结果值。

那么,这两种方法有什么不同呢?


当前回答

在线性回归中,结果是连续的,而在逻辑回归中,结果只有有限数量的可能值(离散的)。

例子: 在一种情况下,x的给定值是一个地块的平方英尺大小,然后预测y的比率是在线性回归下。

相反,如果你想根据面积预测地块是否会以超过30万卢比的价格出售,你将使用逻辑回归。可能的输出是Yes,该地块的售价将超过30万卢比,或者No。

其他回答

简单地说,线性回归是一种回归算法,它输出一个可能连续和无限的值;逻辑回归被认为是一种二进制分类器算法,它输出输入属于标签(0或1)的“概率”。

简单地说,如果在线性回归模型中有更多的测试用例到达,这些测试用例远离预测y=1和y=0的阈值(例如=0.5)。在这种情况下,假设就会改变,变得更糟。因此,线性回归模型不适用于分类问题。

另一个问题是,如果分类是y=0和y=1, h(x)可以是> 1或< 0。因此,我们使用Logistic回归0<=h(x)<=1。

在线性回归中,结果是连续的,而在逻辑回归中,结果只有有限数量的可能值(离散的)。

例子: 在一种情况下,x的给定值是一个地块的平方英尺大小,然后预测y的比率是在线性回归下。

相反,如果你想根据面积预测地块是否会以超过30万卢比的价格出售,你将使用逻辑回归。可能的输出是Yes,该地块的售价将超过30万卢比,或者No。

Regression means continuous variable, Linear means there is linear relation between y and x. Ex= You are trying to predict salary from no of years of experience. So here salary is independent variable(y) and yrs of experience is dependent variable(x). y=b0+ b1*x1 We are trying to find optimum value of constant b0 and b1 which will give us best fitting line for your observation data. It is a equation of line which gives continuous value from x=0 to very large value. This line is called Linear regression model.

逻辑回归是一种分类技术。不要被术语回归所误导。这里我们预测y=0还是1。

在这里,我们首先需要从下面的公式中找出给定x的p(y=1) (y=1的w概率)。

概率p通过下面的公式与y相关

Ex=我们可以将患癌几率超过50%的肿瘤分类为1,将患癌几率低于50%的肿瘤分类为0。

这里红点被预测为0,而绿点被预测为1。

简而言之: 线性回归给出连续的输出。即在一个值范围内的任何值。 逻辑回归给出离散的输出。即Yes/No, 0/1类型的输出。