当我们必须预测分类(或离散)结果的值时,我们使用逻辑回归。我相信我们使用线性回归来预测给定输入值的结果值。

那么,这两种方法有什么不同呢?


当前回答

非常同意以上的评论。 除此之外,还有一些不同之处

在线性回归中,残差被假设为正态分布。 在逻辑回归中,残差需要是独立的,但不是正态分布。

线性回归假设解释变量值的恒定变化导致响应变量的恒定变化。 如果响应变量的值代表概率(在逻辑回归中),则此假设不成立。

广义线性模型(GLM)不假设因变量和自变量之间存在线性关系。但在logit模型中,它假设link函数与自变量之间是线性关系。

其他回答

逻辑回归用于预测分类输出,如是/否,低/中/高等。你基本上有2种类型的逻辑回归二元逻辑回归(是/否,批准/不批准)或多类逻辑回归(低/中/高,0-9等数字)

另一方面,线性回归是因变量(y)是连续的。 Y = mx + c是一个简单的线性回归方程(m =斜率,c是Y截距)。多元线性回归有不止一个自变量(x1,x2,x3,…)等)

在线性回归的情况下,结果是连续的,而在逻辑回归的情况下,结果是离散的(非连续的)

要执行线性回归,我们需要因变量和自变量之间的线性关系。但要执行逻辑回归,我们不需要因变量和自变量之间的线性关系。

线性回归是在数据中拟合一条直线,而逻辑回归是在数据中拟合一条曲线。

线性回归是机器学习的一种回归算法,逻辑回归是机器学习的一种分类算法。

线性回归假设因变量呈高斯(或正态)分布。逻辑回归假设因变量为二项分布。

在线性回归中,结果(因变量)是连续的。它可以有无限个可能值中的任意一个。在逻辑回归中,结果(因变量)只有有限数量的可能值。

例如,如果X包含以平方英尺为单位的房屋面积,而Y包含这些房屋的相应销售价格,您可以使用线性回归来预测销售价格作为房屋大小的函数。虽然可能的销售价格实际上可能没有任何值,但有很多可能的值,因此可以选择线性回归模型。

相反,如果你想根据房子的大小来预测房子是否会卖到20万美元以上,你会使用逻辑回归。可能的输出是Yes,房子将以超过20万美元的价格出售,或者No,房子不会。

| Basis                                                           | Linear                                                                         | Logistic                                                                                                            |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Basic                                                           | The data is modelled using a straight line.                                    | The probability of some obtained event is represented as a linear function of a combination of predictor variables. |
| Linear relationship between dependent and independent variables | Is required                                                                    | Not required                                                                                                        |
| The independent variable                                        | Could be correlated with each other. (Specially in multiple linear regression) | Should not be correlated with each other (no multicollinearity exist).                                              |

非常同意以上的评论。 除此之外,还有一些不同之处

在线性回归中,残差被假设为正态分布。 在逻辑回归中,残差需要是独立的,但不是正态分布。

线性回归假设解释变量值的恒定变化导致响应变量的恒定变化。 如果响应变量的值代表概率(在逻辑回归中),则此假设不成立。

广义线性模型(GLM)不假设因变量和自变量之间存在线性关系。但在logit模型中,它假设link函数与自变量之间是线性关系。