我想写一个函数,返回最接近的2的次幂数。例如,如果我的输入是789,输出应该是1024。有没有办法不使用任何循环,而只是使用一些位运算符?
当前回答
c++ 14 clp2的constexpr版本
#include <iostream>
#include <type_traits>
// Closest least power of 2 minus 1. Returns 0 if n = 0.
template <typename UInt, std::enable_if_t<std::is_unsigned<UInt>::value,int> = 0>
constexpr UInt clp2m1(UInt n, unsigned i = 1) noexcept
{ return i < sizeof(UInt) * 8 ? clp2m1(UInt(n | (n >> i)),i << 1) : n; }
/// Closest least power of 2 minus 1. Returns 0 if n <= 0.
template <typename Int, std::enable_if_t<std::is_integral<Int>::value && std::is_signed<Int>::value,int> = 0>
constexpr auto clp2m1(Int n) noexcept
{ return clp2m1(std::make_unsigned_t<Int>(n <= 0 ? 0 : n)); }
/// Closest least power of 2. Returns 2^N: 2^(N-1) < n <= 2^N. Returns 0 if n <= 0.
template <typename Int, std::enable_if_t<std::is_integral<Int>::value,int> = 0>
constexpr auto clp2(Int n) noexcept
{ return clp2m1(std::make_unsigned_t<Int>(n-1)) + 1; }
/// Next power of 2. Returns 2^N: 2^(N-1) <= n < 2^N. Returns 1 if n = 0. Returns 0 if n < 0.
template <typename Int, std::enable_if_t<std::is_integral<Int>::value,int> = 0>
constexpr auto np2(Int n) noexcept
{ return clp2m1(std::make_unsigned_t<Int>(n)) + 1; }
template <typename T>
void test(T v) { std::cout << clp2(v) << std::endl; }
int main()
{
test(-5); // 0
test(0); // 0
test(8); // 8
test(31); // 32
test(33); // 64
test(789); // 1024
test(char(260)); // 4
test(unsigned(-1) - 1); // 0
test<long long>(unsigned(-1) - 1); // 4294967296
return 0;
}
其他回答
对于IEEE浮点,你可以这样做。
int next_power_of_two(float a_F){
int f = *(int*)&a_F;
int b = f << 9 != 0; // If we're a power of two this is 0, otherwise this is 1
f >>= 23; // remove factional part of floating point number
f -= 127; // subtract 127 (the bias) from the exponent
// adds one to the exponent if were not a power of two,
// then raises our new exponent to the power of two again.
return (1 << (f + b));
}
如果你需要一个整数的解决方案,并且你能够使用内联汇编,BSR会在x86上给你一个整数的log2。它计算有多少位是正确的,这正好等于这个数字的log2。其他处理器(通常)有类似的指令,比如CLZ,根据你的编译器,可能有一个内在的可用指令来为你做这项工作。
检查Bit Twiddling Hacks。你需要得到以2为底的对数,然后加上1。32位值的示例:
四舍五入到下一个2的最高次幂 Unsigned int v;//计算32位v的下一个最高次幂2 v -; V |= V >> 1; V |= V >> 2; V |= V >> 4; V |= V >> 8; V |= V >> 16; v + +;
延伸到其他宽度应该是明显的。
将其转换为浮点数,然后使用.hex()来显示标准化的IEEE表示。
> > >(789)浮动.hex () “0 x1.8a80000000000p + 9”
然后提取指数,再加1。
>>> int(float(789).hex().split('p+')[1]) + 1 10
取2的这个次方。
> > > 2 * * (int (float(789)。hex(),斯普利特(“p +”)[1])+ 1) 1024
这是我用来让它成为一个常数表达式的,如果输入是一个常数表达式的话。
#define uptopow2_0(v) ((v) - 1)
#define uptopow2_1(v) (uptopow2_0(v) | uptopow2_0(v) >> 1)
#define uptopow2_2(v) (uptopow2_1(v) | uptopow2_1(v) >> 2)
#define uptopow2_3(v) (uptopow2_2(v) | uptopow2_2(v) >> 4)
#define uptopow2_4(v) (uptopow2_3(v) | uptopow2_3(v) >> 8)
#define uptopow2_5(v) (uptopow2_4(v) | uptopow2_4(v) >> 16)
#define uptopow2(v) (uptopow2_5(v) + 1) /* this is the one programmer uses */
例如,这样的表达式:
uptopow2(sizeof (struct foo))
会很好地化简为常数。
尽管问题标注为c,我的5分钱。幸运的是,c++ 20将包含std::ceil2和std::floor2(参见这里)。它是consexpr模板函数,目前的GCC实现使用位移位和工作于任何整型无符号类型。