我想写一个函数,返回最接近的2的次幂数。例如,如果我的输入是789,输出应该是1024。有没有办法不使用任何循环,而只是使用一些位运算符?


当前回答

尽管问题标注为c,我的5分钱。幸运的是,c++ 20将包含std::ceil2和std::floor2(参见这里)。它是consexpr模板函数,目前的GCC实现使用位移位和工作于任何整型无符号类型。

其他回答

C / c++中用于整数输入的高效微软(例如Visual Studio 2017)特定解决方案。在检查最有效的1位的位置之前,通过递减处理输入完全匹配2的幂值的情况。

inline unsigned int ExpandToPowerOf2(unsigned int Value)
{
    unsigned long Index;
    _BitScanReverse(&Index, Value - 1);
    return (1U << (Index + 1));
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

#if defined(WIN64) // The _BitScanReverse64 intrinsic is only available for 64 bit builds because it depends on x64

inline unsigned long long ExpandToPowerOf2(unsigned long long Value)
{
    unsigned long Index;
    _BitScanReverse64(&Index, Value - 1);
    return (1ULL << (Index + 1));
}

#endif

这将为英特尔处理器生成5个左右的内联指令,类似如下:

dec eax
bsr rcx, rax
inc ecx
mov eax, 1
shl rax, cl

显然Visual Studio c++编译器并没有针对编译时值进行优化,但这里并没有大量的指令。

编辑:

如果你想让输入值1产生1(2的0次方),对上面代码的一个小修改仍然会生成没有分支的直通指令。

inline unsigned int ExpandToPowerOf2(unsigned int Value)
{
    unsigned long Index;
    _BitScanReverse(&Index, --Value);
    if (Value == 0)
        Index = (unsigned long) -1;
    return (1U << (Index + 1));
}

生成更多的指令。诀窍在于Index可以被一个测试后跟一个cmove指令所取代。

如果你需要OpenGL相关的东西:

/* Compute the nearest power of 2 number that is 
 * less than or equal to the value passed in. 
 */
static GLuint 
nearestPower( GLuint value )
{
    int i = 1;

    if (value == 0) return -1;      /* Error! */
    for (;;) {
         if (value == 1) return i;
         else if (value == 3) return i*4;
         value >>= 1; i *= 2;
    }
}

你可能会发现以下的澄清有助于达到你的目的:

假设你有一个好的编译器&它可以做bit twiddling在这一点上我以上,但无论如何这是工作!!

    // http://graphics.stanford.edu/~seander/bithacks.html#IntegerLogObvious
    #define SH1(v)  ((v-1) | ((v-1) >> 1))            // accidently came up w/ this...
    #define SH2(v)  ((v) | ((v) >> 2))
    #define SH4(v)  ((v) | ((v) >> 4))
    #define SH8(v)  ((v) | ((v) >> 8))
    #define SH16(v) ((v) | ((v) >> 16))
    #define OP(v) (SH16(SH8(SH4(SH2(SH1(v))))))         

    #define CB0(v)   ((v) - (((v) >> 1) & 0x55555555))
    #define CB1(v)   (((v) & 0x33333333) + (((v) >> 2) & 0x33333333))
    #define CB2(v)   ((((v) + ((v) >> 4) & 0xF0F0F0F) * 0x1010101) >> 24)
    #define CBSET(v) (CB2(CB1(CB0((v)))))
    #define FLOG2(v) (CBSET(OP(v)))

测试代码如下:

#include <iostream>

using namespace std;

// http://graphics.stanford.edu/~seander/bithacks.html#IntegerLogObvious
#define SH1(v)  ((v-1) | ((v-1) >> 1))  // accidently guess this...
#define SH2(v)  ((v) | ((v) >> 2))
#define SH4(v)  ((v) | ((v) >> 4))
#define SH8(v)  ((v) | ((v) >> 8))
#define SH16(v) ((v) | ((v) >> 16))
#define OP(v) (SH16(SH8(SH4(SH2(SH1(v))))))         

#define CB0(v)   ((v) - (((v) >> 1) & 0x55555555))
#define CB1(v)   (((v) & 0x33333333) + (((v) >> 2) & 0x33333333))
#define CB2(v)   ((((v) + ((v) >> 4) & 0xF0F0F0F) * 0x1010101) >> 24)
#define CBSET(v) (CB2(CB1(CB0((v)))))
#define FLOG2(v) (CBSET(OP(v))) 

#define SZ4         FLOG2(4)
#define SZ6         FLOG2(6)
#define SZ7         FLOG2(7)
#define SZ8         FLOG2(8) 
#define SZ9         FLOG2(9)
#define SZ16        FLOG2(16)
#define SZ17        FLOG2(17)
#define SZ127       FLOG2(127)
#define SZ1023      FLOG2(1023)
#define SZ1024      FLOG2(1024)
#define SZ2_17      FLOG2((1ul << 17))  // 
#define SZ_LOG2     FLOG2(SZ)

#define DBG_PRINT(x) do { std::printf("Line:%-4d" "  %10s = %-10d\n", __LINE__, #x, x); } while(0);

uint32_t arrTble[FLOG2(63)];

int main(){
    int8_t n;

    DBG_PRINT(SZ4);    
    DBG_PRINT(SZ6);    
    DBG_PRINT(SZ7);    
    DBG_PRINT(SZ8);    
    DBG_PRINT(SZ9); 
    DBG_PRINT(SZ16);
    DBG_PRINT(SZ17);
    DBG_PRINT(SZ127);
    DBG_PRINT(SZ1023);
    DBG_PRINT(SZ1024);
    DBG_PRINT(SZ2_17);

    return(0);
}

输出:

Line:39           SZ4 = 2
Line:40           SZ6 = 3
Line:41           SZ7 = 3
Line:42           SZ8 = 3
Line:43           SZ9 = 4
Line:44          SZ16 = 4
Line:45          SZ17 = 5
Line:46         SZ127 = 7
Line:47        SZ1023 = 10
Line:48        SZ1024 = 10
Line:49        SZ2_16 = 17

在标准c++20中,这包含在<bit>中。 答案很简单

#include <bit>
unsigned long upper_power_of_two(unsigned long v)
{
    return std::bit_ceil(v);
}

注意: 我给出的解决方案是针对c++,而不是c,我会给出这个问题的答案,但它是这个问题的副本!