我想写一个函数,返回最接近的2的次幂数。例如,如果我的输入是789,输出应该是1024。有没有办法不使用任何循环,而只是使用一些位运算符?


当前回答

如果你需要OpenGL相关的东西:

/* Compute the nearest power of 2 number that is 
 * less than or equal to the value passed in. 
 */
static GLuint 
nearestPower( GLuint value )
{
    int i = 1;

    if (value == 0) return -1;      /* Error! */
    for (;;) {
         if (value == 1) return i;
         else if (value == 3) return i*4;
         value >>= 1; i *= 2;
    }
}

其他回答

next = pow(2, ceil(log(x)/log(2)));

这是通过找到你想要2乘以x的数字来实现的(取这个数字的对数,然后除以想要的底数的对数,详见维基百科)。然后把它四舍五入,得到最接近的整数幂。

这是一个比其他地方链接的按位方法更通用的方法(即更慢!),但很好地了解数学,不是吗?

试图为这个问题找到一个“终极”解决方案。下面的代码

针对的是C语言(不是c++), 使用编译器内置生成有效的代码(CLZ或BSR指令),如果编译器支持任何, 是便携式的(标准C和没有汇编),除了内置,和 处理所有未定义的行为。

如果你用c++编写,你可以适当地调整代码。注意,c++ 20引入了std::bit_ceil,它做了完全相同的事情,只是在某些条件下行为可能是未定义的。

#include <limits.h>

#ifdef _MSC_VER
# if _MSC_VER >= 1400
/* _BitScanReverse is introduced in Visual C++ 2005 and requires
   <intrin.h> (also introduced in Visual C++ 2005). */
#include <intrin.h>
#pragma intrinsic(_BitScanReverse)
#pragma intrinsic(_BitScanReverse64)
#  define HAVE_BITSCANREVERSE 1
# endif
#endif

/* Macro indicating that the compiler supports __builtin_clz().
   The name HAVE_BUILTIN_CLZ seems to be the most common, but in some
   projects HAVE__BUILTIN_CLZ is used instead. */
#ifdef __has_builtin
# if __has_builtin(__builtin_clz)
#  define HAVE_BUILTIN_CLZ 1
# endif
#elif defined(__GNUC__)
# if (__GNUC__ > 3)
#  define HAVE_BUILTIN_CLZ 1
# elif defined(__GNUC_MINOR__)
#  if (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)
#   define HAVE_BUILTIN_CLZ 1
#  endif
# endif
#endif

/**
 * Returns the smallest power of two that is not smaller than x.
 */
unsigned long int next_power_of_2_long(unsigned long int x)
{
    if (x <= 1) {
        return 1;
    }
    x--;

#ifdef HAVE_BITSCANREVERSE
    if (x > (ULONG_MAX >> 1)) {
        return 0;
    } else {
        unsigned long int index;
        (void) _BitScanReverse(&index, x);
        return (1UL << (index + 1));
    }
#elif defined(HAVE_BUILTIN_CLZ)
    if (x > (ULONG_MAX >> 1)) {
        return 0;
    }
    return (1UL << (sizeof(x) * CHAR_BIT - __builtin_clzl(x)));
#else
    /* Solution from "Bit Twiddling Hacks"
       <http://www.graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2>
       but converted to a loop for smaller code size.
       ("gcc -O3" will unroll this.) */
    {
        unsigned int shift;
        for (shift = 1; shift < sizeof(x) * CHAR_BIT; shift <<= 1) {
            x |= (x >> shift);
        }
    }
    return (x + 1);
#endif
}

unsigned int next_power_of_2(unsigned int x)
{
    if (x <= 1) {
        return 1;
    }
    x--;

#ifdef HAVE_BITSCANREVERSE
    if (x > (UINT_MAX >> 1)) {
        return 0;
    } else {
        unsigned long int index;
        (void) _BitScanReverse(&index, x);
        return (1U << (index + 1));
    }
#elif defined(HAVE_BUILTIN_CLZ)
    if (x > (UINT_MAX >> 1)) {
        return 0;
    }
    return (1U << (sizeof(x) * CHAR_BIT - __builtin_clz(x)));
#else
    {
        unsigned int shift;
        for (shift = 1; shift < sizeof(x) * CHAR_BIT; shift <<= 1) {
            x |= (x >> shift);
        }
    }
    return (x + 1);
#endif
}

unsigned long long next_power_of_2_long_long(unsigned long long x)
{
    if (x <= 1) {
        return 1;
    }
    x--;

#if (defined(HAVE_BITSCANREVERSE) && \
    ULLONG_MAX == 18446744073709551615ULL)
    if (x > (ULLONG_MAX >> 1)) {
        return 0;
    } else {
        /* assert(sizeof(__int64) == sizeof(long long)); */
        unsigned long int index;
        (void) _BitScanReverse64(&index, x);
        return (1ULL << (index + 1));
    }
#elif defined(HAVE_BUILTIN_CLZ)
    if (x > (ULLONG_MAX >> 1)) {
        return 0;
    }
    return (1ULL << (sizeof(x) * CHAR_BIT - __builtin_clzll(x)));
#else
    {
        unsigned int shift;
        for (shift = 1; shift < sizeof(x) * CHAR_BIT; shift <<= 1) {
            x |= (x >> shift);
        }
    }
    return (x + 1);
#endif
}

如果您正在使用GCC,您可能想要看看Lockless Inc.优化next_pow2()函数。本页描述了一种使用内置函数builtin_clz()(计数前导零)的方法,然后直接使用x86 (ia32)汇编指令bsr(位扫描反向),就像它在另一个答案的游戏开发站点链接中所描述的那样。此代码可能比前面的回答中描述的更快。

顺便说一下,如果你不打算使用汇编指令和64位数据类型,你可以使用这个

/**
 * return the smallest power of two value
 * greater than x
 *
 * Input range:  [2..2147483648]
 * Output range: [2..2147483648]
 *
 */
__attribute__ ((const))
static inline uint32_t p2(uint32_t x)
{
#if 0
    assert(x > 1);
    assert(x <= ((UINT32_MAX/2) + 1));
#endif

    return 1 << (32 - __builtin_clz (x - 1));
}

尽管问题标注为c,我的5分钱。幸运的是,c++ 20将包含std::ceil2和std::floor2(参见这里)。它是consexpr模板函数,目前的GCC实现使用位移位和工作于任何整型无符号类型。

还有一个,虽然我用的是循环,但这比数学操作数要快得多

功率两“地板”选项:

int power = 1;
while (x >>= 1) power <<= 1;

两个“ceil”选项的力量:

int power = 2;
x--;    // <<-- UPDATED
while (x >>= 1) power <<= 1;

更新

正如在评论中提到的,在cell中有错误,它的结果是错误的。

以下是全部功能:

unsigned power_floor(unsigned x) {
    int power = 1;
    while (x >>= 1) power <<= 1;
    return power;
}

unsigned power_ceil(unsigned x) {
    if (x <= 1) return 1;
    int power = 2;
    x--;
    while (x >>= 1) power <<= 1;
    return power;
}