我想写一个函数,返回最接近的2的次幂数。例如,如果我的输入是789,输出应该是1024。有没有办法不使用任何循环,而只是使用一些位运算符?
当前回答
如果你需要OpenGL相关的东西:
/* Compute the nearest power of 2 number that is
* less than or equal to the value passed in.
*/
static GLuint
nearestPower( GLuint value )
{
int i = 1;
if (value == 0) return -1; /* Error! */
for (;;) {
if (value == 1) return i;
else if (value == 3) return i*4;
value >>= 1; i *= 2;
}
}
其他回答
检查Bit Twiddling Hacks。你需要得到以2为底的对数,然后加上1。32位值的示例:
四舍五入到下一个2的最高次幂 Unsigned int v;//计算32位v的下一个最高次幂2 v -; V |= V >> 1; V |= V >> 2; V |= V >> 4; V |= V >> 8; V |= V >> 16; v + +;
延伸到其他宽度应该是明显的。
C / c++中用于整数输入的高效微软(例如Visual Studio 2017)特定解决方案。在检查最有效的1位的位置之前,通过递减处理输入完全匹配2的幂值的情况。
inline unsigned int ExpandToPowerOf2(unsigned int Value)
{
unsigned long Index;
_BitScanReverse(&Index, Value - 1);
return (1U << (Index + 1));
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if defined(WIN64) // The _BitScanReverse64 intrinsic is only available for 64 bit builds because it depends on x64
inline unsigned long long ExpandToPowerOf2(unsigned long long Value)
{
unsigned long Index;
_BitScanReverse64(&Index, Value - 1);
return (1ULL << (Index + 1));
}
#endif
这将为英特尔处理器生成5个左右的内联指令,类似如下:
dec eax
bsr rcx, rax
inc ecx
mov eax, 1
shl rax, cl
显然Visual Studio c++编译器并没有针对编译时值进行优化,但这里并没有大量的指令。
编辑:
如果你想让输入值1产生1(2的0次方),对上面代码的一个小修改仍然会生成没有分支的直通指令。
inline unsigned int ExpandToPowerOf2(unsigned int Value)
{
unsigned long Index;
_BitScanReverse(&Index, --Value);
if (Value == 0)
Index = (unsigned long) -1;
return (1U << (Index + 1));
}
生成更多的指令。诀窍在于Index可以被一个测试后跟一个cmove指令所取代。
如果您想要单行模板。在这里
int nxt_po2(int n) { return 1 + (n|=(n|=(n|=(n|=(n|=(n-=1)>>1)>>2)>>4)>>8)>>16); }
or
int nxt_po2(int n) { return 1 + (n|=(n|=(n|=(n|=(n|=(n-=1)>>(1<<0))>>(1<<1))>>(1<<2))>>(1<<3))>>(1<<4)); }
试图为这个问题找到一个“终极”解决方案。下面的代码
针对的是C语言(不是c++), 使用编译器内置生成有效的代码(CLZ或BSR指令),如果编译器支持任何, 是便携式的(标准C和没有汇编),除了内置,和 处理所有未定义的行为。
如果你用c++编写,你可以适当地调整代码。注意,c++ 20引入了std::bit_ceil,它做了完全相同的事情,只是在某些条件下行为可能是未定义的。
#include <limits.h>
#ifdef _MSC_VER
# if _MSC_VER >= 1400
/* _BitScanReverse is introduced in Visual C++ 2005 and requires
<intrin.h> (also introduced in Visual C++ 2005). */
#include <intrin.h>
#pragma intrinsic(_BitScanReverse)
#pragma intrinsic(_BitScanReverse64)
# define HAVE_BITSCANREVERSE 1
# endif
#endif
/* Macro indicating that the compiler supports __builtin_clz().
The name HAVE_BUILTIN_CLZ seems to be the most common, but in some
projects HAVE__BUILTIN_CLZ is used instead. */
#ifdef __has_builtin
# if __has_builtin(__builtin_clz)
# define HAVE_BUILTIN_CLZ 1
# endif
#elif defined(__GNUC__)
# if (__GNUC__ > 3)
# define HAVE_BUILTIN_CLZ 1
# elif defined(__GNUC_MINOR__)
# if (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)
# define HAVE_BUILTIN_CLZ 1
# endif
# endif
#endif
/**
* Returns the smallest power of two that is not smaller than x.
*/
unsigned long int next_power_of_2_long(unsigned long int x)
{
if (x <= 1) {
return 1;
}
x--;
#ifdef HAVE_BITSCANREVERSE
if (x > (ULONG_MAX >> 1)) {
return 0;
} else {
unsigned long int index;
(void) _BitScanReverse(&index, x);
return (1UL << (index + 1));
}
#elif defined(HAVE_BUILTIN_CLZ)
if (x > (ULONG_MAX >> 1)) {
return 0;
}
return (1UL << (sizeof(x) * CHAR_BIT - __builtin_clzl(x)));
#else
/* Solution from "Bit Twiddling Hacks"
<http://www.graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2>
but converted to a loop for smaller code size.
("gcc -O3" will unroll this.) */
{
unsigned int shift;
for (shift = 1; shift < sizeof(x) * CHAR_BIT; shift <<= 1) {
x |= (x >> shift);
}
}
return (x + 1);
#endif
}
unsigned int next_power_of_2(unsigned int x)
{
if (x <= 1) {
return 1;
}
x--;
#ifdef HAVE_BITSCANREVERSE
if (x > (UINT_MAX >> 1)) {
return 0;
} else {
unsigned long int index;
(void) _BitScanReverse(&index, x);
return (1U << (index + 1));
}
#elif defined(HAVE_BUILTIN_CLZ)
if (x > (UINT_MAX >> 1)) {
return 0;
}
return (1U << (sizeof(x) * CHAR_BIT - __builtin_clz(x)));
#else
{
unsigned int shift;
for (shift = 1; shift < sizeof(x) * CHAR_BIT; shift <<= 1) {
x |= (x >> shift);
}
}
return (x + 1);
#endif
}
unsigned long long next_power_of_2_long_long(unsigned long long x)
{
if (x <= 1) {
return 1;
}
x--;
#if (defined(HAVE_BITSCANREVERSE) && \
ULLONG_MAX == 18446744073709551615ULL)
if (x > (ULLONG_MAX >> 1)) {
return 0;
} else {
/* assert(sizeof(__int64) == sizeof(long long)); */
unsigned long int index;
(void) _BitScanReverse64(&index, x);
return (1ULL << (index + 1));
}
#elif defined(HAVE_BUILTIN_CLZ)
if (x > (ULLONG_MAX >> 1)) {
return 0;
}
return (1ULL << (sizeof(x) * CHAR_BIT - __builtin_clzll(x)));
#else
{
unsigned int shift;
for (shift = 1; shift < sizeof(x) * CHAR_BIT; shift <<= 1) {
x |= (x >> shift);
}
}
return (x + 1);
#endif
}
next = pow(2, ceil(log(x)/log(2)));
这是通过找到你想要2乘以x的数字来实现的(取这个数字的对数,然后除以想要的底数的对数,详见维基百科)。然后把它四舍五入,得到最接近的整数幂。
这是一个比其他地方链接的按位方法更通用的方法(即更慢!),但很好地了解数学,不是吗?