我想写一个函数,返回最接近的2的次幂数。例如,如果我的输入是789,输出应该是1024。有没有办法不使用任何循环,而只是使用一些位运算符?


当前回答

对于IEEE浮点,你可以这样做。

int next_power_of_two(float a_F){
    int f = *(int*)&a_F;
    int b = f << 9 != 0; // If we're a power of two this is 0, otherwise this is 1

    f >>= 23; // remove factional part of floating point number
    f -= 127; // subtract 127 (the bias) from the exponent

    // adds one to the exponent if were not a power of two, 
    // then raises our new exponent to the power of two again.
    return (1 << (f + b)); 
}

如果你需要一个整数的解决方案,并且你能够使用内联汇编,BSR会在x86上给你一个整数的log2。它计算有多少位是正确的,这正好等于这个数字的log2。其他处理器(通常)有类似的指令,比如CLZ,根据你的编译器,可能有一个内在的可用指令来为你做这项工作。

其他回答

为了完整起见,这里是用标准C语言实现的浮点数。

double next_power_of_two(double value) {
    int exp;
    if(frexp(value, &exp) == 0.5) {
        // Omit this case to round precise powers of two up to the *next* power
        return value;
    }
    return ldexp(1.0, exp);
}

c++ 14 clp2的constexpr版本

#include <iostream>
#include <type_traits>

// Closest least power of 2 minus 1. Returns 0 if n = 0.
template <typename UInt, std::enable_if_t<std::is_unsigned<UInt>::value,int> = 0>
  constexpr UInt clp2m1(UInt n, unsigned i = 1) noexcept
    { return i < sizeof(UInt) * 8 ? clp2m1(UInt(n | (n >> i)),i << 1) : n; }

/// Closest least power of 2 minus 1. Returns 0 if n <= 0.
template <typename Int, std::enable_if_t<std::is_integral<Int>::value && std::is_signed<Int>::value,int> = 0>
  constexpr auto clp2m1(Int n) noexcept
    { return clp2m1(std::make_unsigned_t<Int>(n <= 0 ? 0 : n)); }

/// Closest least power of 2. Returns 2^N: 2^(N-1) < n <= 2^N. Returns 0 if n <= 0.
template <typename Int, std::enable_if_t<std::is_integral<Int>::value,int> = 0>
  constexpr auto clp2(Int n) noexcept
    { return clp2m1(std::make_unsigned_t<Int>(n-1)) + 1; }

/// Next power of 2. Returns 2^N: 2^(N-1) <= n < 2^N. Returns 1 if n = 0. Returns 0 if n < 0.
template <typename Int, std::enable_if_t<std::is_integral<Int>::value,int> = 0>
  constexpr auto np2(Int n) noexcept
    { return clp2m1(std::make_unsigned_t<Int>(n)) + 1; }

template <typename T>
  void test(T v) { std::cout << clp2(v) << std::endl; }

int main()
{
    test(-5);                          // 0
    test(0);                           // 0
    test(8);                           // 8
    test(31);                          // 32
    test(33);                          // 64
    test(789);                         // 1024
    test(char(260));                   // 4
    test(unsigned(-1) - 1);            // 0
    test<long long>(unsigned(-1) - 1); // 4294967296

    return 0;
}

g++编译器提供了一个内置函数__builtin_clz,用于计算前导零:

所以我们可以这样做:

int nextPowerOfTwo(unsigned int x) {
  return 1 << sizeof(x)*8 - __builtin_clz(x);
}

int main () {
  std::cout << nextPowerOfTwo(7)  << std::endl;
  std::cout << nextPowerOfTwo(31) << std::endl;
  std::cout << nextPowerOfTwo(33) << std::endl;
  std::cout << nextPowerOfTwo(8)  << std::endl;
  std::cout << nextPowerOfTwo(91) << std::endl;
  
  return 0;
}

结果:

8
32
64
16
128

但请注意,对于x == 0, __builtin_clz return是未定义的。

这是我用来让它成为一个常数表达式的,如果输入是一个常数表达式的话。

#define uptopow2_0(v) ((v) - 1)
#define uptopow2_1(v) (uptopow2_0(v) | uptopow2_0(v) >> 1)
#define uptopow2_2(v) (uptopow2_1(v) | uptopow2_1(v) >> 2)
#define uptopow2_3(v) (uptopow2_2(v) | uptopow2_2(v) >> 4)
#define uptopow2_4(v) (uptopow2_3(v) | uptopow2_3(v) >> 8)
#define uptopow2_5(v) (uptopow2_4(v) | uptopow2_4(v) >> 16)

#define uptopow2(v) (uptopow2_5(v) + 1)  /* this is the one programmer uses */

例如,这样的表达式:

uptopow2(sizeof (struct foo))

会很好地化简为常数。

我认为这也是可行的:

int power = 1;
while(power < x)
    power*=2;

答案就是力量。