我想写一个函数,返回最接近的2的次幂数。例如,如果我的输入是789,输出应该是1024。有没有办法不使用任何循环,而只是使用一些位运算符?
当前回答
我试着找到最接近2的次幂,然后写出这个函数。希望它能帮助你。只要用最近的小数乘以2,就能得到2的最近上次方
int nearest_upper_power(int number){
int temp=number;
while((number&(number-1))!=0){
temp<<=1;
number&=temp;
}
//Here number is closest lower power
number*=2;
return number;
}
其他回答
C / c++中用于整数输入的高效微软(例如Visual Studio 2017)特定解决方案。在检查最有效的1位的位置之前,通过递减处理输入完全匹配2的幂值的情况。
inline unsigned int ExpandToPowerOf2(unsigned int Value)
{
unsigned long Index;
_BitScanReverse(&Index, Value - 1);
return (1U << (Index + 1));
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#if defined(WIN64) // The _BitScanReverse64 intrinsic is only available for 64 bit builds because it depends on x64
inline unsigned long long ExpandToPowerOf2(unsigned long long Value)
{
unsigned long Index;
_BitScanReverse64(&Index, Value - 1);
return (1ULL << (Index + 1));
}
#endif
这将为英特尔处理器生成5个左右的内联指令,类似如下:
dec eax
bsr rcx, rax
inc ecx
mov eax, 1
shl rax, cl
显然Visual Studio c++编译器并没有针对编译时值进行优化,但这里并没有大量的指令。
编辑:
如果你想让输入值1产生1(2的0次方),对上面代码的一个小修改仍然会生成没有分支的直通指令。
inline unsigned int ExpandToPowerOf2(unsigned int Value)
{
unsigned long Index;
_BitScanReverse(&Index, --Value);
if (Value == 0)
Index = (unsigned long) -1;
return (1U << (Index + 1));
}
生成更多的指令。诀窍在于Index可以被一个测试后跟一个cmove指令所取代。
如果您想要单行模板。在这里
int nxt_po2(int n) { return 1 + (n|=(n|=(n|=(n|=(n|=(n-=1)>>1)>>2)>>4)>>8)>>16); }
or
int nxt_po2(int n) { return 1 + (n|=(n|=(n|=(n|=(n|=(n-=1)>>(1<<0))>>(1<<1))>>(1<<2))>>(1<<3))>>(1<<4)); }
g++编译器提供了一个内置函数__builtin_clz,用于计算前导零:
所以我们可以这样做:
int nextPowerOfTwo(unsigned int x) {
return 1 << sizeof(x)*8 - __builtin_clz(x);
}
int main () {
std::cout << nextPowerOfTwo(7) << std::endl;
std::cout << nextPowerOfTwo(31) << std::endl;
std::cout << nextPowerOfTwo(33) << std::endl;
std::cout << nextPowerOfTwo(8) << std::endl;
std::cout << nextPowerOfTwo(91) << std::endl;
return 0;
}
结果:
8
32
64
16
128
但请注意,对于x == 0, __builtin_clz return是未定义的。
c++ 14 clp2的constexpr版本
#include <iostream>
#include <type_traits>
// Closest least power of 2 minus 1. Returns 0 if n = 0.
template <typename UInt, std::enable_if_t<std::is_unsigned<UInt>::value,int> = 0>
constexpr UInt clp2m1(UInt n, unsigned i = 1) noexcept
{ return i < sizeof(UInt) * 8 ? clp2m1(UInt(n | (n >> i)),i << 1) : n; }
/// Closest least power of 2 minus 1. Returns 0 if n <= 0.
template <typename Int, std::enable_if_t<std::is_integral<Int>::value && std::is_signed<Int>::value,int> = 0>
constexpr auto clp2m1(Int n) noexcept
{ return clp2m1(std::make_unsigned_t<Int>(n <= 0 ? 0 : n)); }
/// Closest least power of 2. Returns 2^N: 2^(N-1) < n <= 2^N. Returns 0 if n <= 0.
template <typename Int, std::enable_if_t<std::is_integral<Int>::value,int> = 0>
constexpr auto clp2(Int n) noexcept
{ return clp2m1(std::make_unsigned_t<Int>(n-1)) + 1; }
/// Next power of 2. Returns 2^N: 2^(N-1) <= n < 2^N. Returns 1 if n = 0. Returns 0 if n < 0.
template <typename Int, std::enable_if_t<std::is_integral<Int>::value,int> = 0>
constexpr auto np2(Int n) noexcept
{ return clp2m1(std::make_unsigned_t<Int>(n)) + 1; }
template <typename T>
void test(T v) { std::cout << clp2(v) << std::endl; }
int main()
{
test(-5); // 0
test(0); // 0
test(8); // 8
test(31); // 32
test(33); // 64
test(789); // 1024
test(char(260)); // 4
test(unsigned(-1) - 1); // 0
test<long long>(unsigned(-1) - 1); // 4294967296
return 0;
}
检查Bit Twiddling Hacks。你需要得到以2为底的对数,然后加上1。32位值的示例:
四舍五入到下一个2的最高次幂 Unsigned int v;//计算32位v的下一个最高次幂2 v -; V |= V >> 1; V |= V >> 2; V |= V >> 4; V |= V >> 8; V |= V >> 16; v + +;
延伸到其他宽度应该是明显的。