我想写一个函数,返回最接近的2的次幂数。例如,如果我的输入是789,输出应该是1024。有没有办法不使用任何循环,而只是使用一些位运算符?
当前回答
我试着找到最接近2的次幂,然后写出这个函数。希望它能帮助你。只要用最近的小数乘以2,就能得到2的最近上次方
int nearest_upper_power(int number){
int temp=number;
while((number&(number-1))!=0){
temp<<=1;
number&=temp;
}
//Here number is closest lower power
number*=2;
return number;
}
其他回答
试图为这个问题找到一个“终极”解决方案。下面的代码
针对的是C语言(不是c++), 使用编译器内置生成有效的代码(CLZ或BSR指令),如果编译器支持任何, 是便携式的(标准C和没有汇编),除了内置,和 处理所有未定义的行为。
如果你用c++编写,你可以适当地调整代码。注意,c++ 20引入了std::bit_ceil,它做了完全相同的事情,只是在某些条件下行为可能是未定义的。
#include <limits.h>
#ifdef _MSC_VER
# if _MSC_VER >= 1400
/* _BitScanReverse is introduced in Visual C++ 2005 and requires
<intrin.h> (also introduced in Visual C++ 2005). */
#include <intrin.h>
#pragma intrinsic(_BitScanReverse)
#pragma intrinsic(_BitScanReverse64)
# define HAVE_BITSCANREVERSE 1
# endif
#endif
/* Macro indicating that the compiler supports __builtin_clz().
The name HAVE_BUILTIN_CLZ seems to be the most common, but in some
projects HAVE__BUILTIN_CLZ is used instead. */
#ifdef __has_builtin
# if __has_builtin(__builtin_clz)
# define HAVE_BUILTIN_CLZ 1
# endif
#elif defined(__GNUC__)
# if (__GNUC__ > 3)
# define HAVE_BUILTIN_CLZ 1
# elif defined(__GNUC_MINOR__)
# if (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)
# define HAVE_BUILTIN_CLZ 1
# endif
# endif
#endif
/**
* Returns the smallest power of two that is not smaller than x.
*/
unsigned long int next_power_of_2_long(unsigned long int x)
{
if (x <= 1) {
return 1;
}
x--;
#ifdef HAVE_BITSCANREVERSE
if (x > (ULONG_MAX >> 1)) {
return 0;
} else {
unsigned long int index;
(void) _BitScanReverse(&index, x);
return (1UL << (index + 1));
}
#elif defined(HAVE_BUILTIN_CLZ)
if (x > (ULONG_MAX >> 1)) {
return 0;
}
return (1UL << (sizeof(x) * CHAR_BIT - __builtin_clzl(x)));
#else
/* Solution from "Bit Twiddling Hacks"
<http://www.graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2>
but converted to a loop for smaller code size.
("gcc -O3" will unroll this.) */
{
unsigned int shift;
for (shift = 1; shift < sizeof(x) * CHAR_BIT; shift <<= 1) {
x |= (x >> shift);
}
}
return (x + 1);
#endif
}
unsigned int next_power_of_2(unsigned int x)
{
if (x <= 1) {
return 1;
}
x--;
#ifdef HAVE_BITSCANREVERSE
if (x > (UINT_MAX >> 1)) {
return 0;
} else {
unsigned long int index;
(void) _BitScanReverse(&index, x);
return (1U << (index + 1));
}
#elif defined(HAVE_BUILTIN_CLZ)
if (x > (UINT_MAX >> 1)) {
return 0;
}
return (1U << (sizeof(x) * CHAR_BIT - __builtin_clz(x)));
#else
{
unsigned int shift;
for (shift = 1; shift < sizeof(x) * CHAR_BIT; shift <<= 1) {
x |= (x >> shift);
}
}
return (x + 1);
#endif
}
unsigned long long next_power_of_2_long_long(unsigned long long x)
{
if (x <= 1) {
return 1;
}
x--;
#if (defined(HAVE_BITSCANREVERSE) && \
ULLONG_MAX == 18446744073709551615ULL)
if (x > (ULLONG_MAX >> 1)) {
return 0;
} else {
/* assert(sizeof(__int64) == sizeof(long long)); */
unsigned long int index;
(void) _BitScanReverse64(&index, x);
return (1ULL << (index + 1));
}
#elif defined(HAVE_BUILTIN_CLZ)
if (x > (ULLONG_MAX >> 1)) {
return 0;
}
return (1ULL << (sizeof(x) * CHAR_BIT - __builtin_clzll(x)));
#else
{
unsigned int shift;
for (shift = 1; shift < sizeof(x) * CHAR_BIT; shift <<= 1) {
x |= (x >> shift);
}
}
return (x + 1);
#endif
}
检查Bit Twiddling Hacks。你需要得到以2为底的对数,然后加上1。32位值的示例:
四舍五入到下一个2的最高次幂 Unsigned int v;//计算32位v的下一个最高次幂2 v -; V |= V >> 1; V |= V >> 2; V |= V >> 4; V |= V >> 8; V |= V >> 16; v + +;
延伸到其他宽度应该是明显的。
对于IEEE浮点,你可以这样做。
int next_power_of_two(float a_F){
int f = *(int*)&a_F;
int b = f << 9 != 0; // If we're a power of two this is 0, otherwise this is 1
f >>= 23; // remove factional part of floating point number
f -= 127; // subtract 127 (the bias) from the exponent
// adds one to the exponent if were not a power of two,
// then raises our new exponent to the power of two again.
return (1 << (f + b));
}
如果你需要一个整数的解决方案,并且你能够使用内联汇编,BSR会在x86上给你一个整数的log2。它计算有多少位是正确的,这正好等于这个数字的log2。其他处理器(通常)有类似的指令,比如CLZ,根据你的编译器,可能有一个内在的可用指令来为你做这项工作。
你可能会发现以下的澄清有助于达到你的目的:
import sys
def is_power2(x):
return x > 0 and ((x & (x - 1)) == 0)
def find_nearest_power2(x):
if x <= 0:
raise ValueError("invalid input")
if is_power2(x):
return x
else:
bits = get_bits(x)
upper = 1 << (bits)
lower = 1 << (bits - 1)
mid = (upper + lower) // 2
if (x - mid) > 0:
return upper
else:
return lower
def get_bits(x):
"""return number of bits in binary representation"""
if x < 0:
raise ValueError("invalid input: input should be positive integer")
count = 0
while (x != 0):
try:
x = x >> 1
except TypeError as error:
print(error, "input should be of type integer")
sys.exit(1)
count += 1
return count