最近我参加了一个面试,面试官要求我“编写一个程序,从一个包含10亿个数字的数组中找出100个最大的数字”。
我只能给出一个蛮力解决方案,即以O(nlogn)时间复杂度对数组进行排序,并取最后100个数字。
Arrays.sort(array);
面试官正在寻找一个更好的时间复杂度,我尝试了几个其他的解决方案,但都没有回答他。有没有更好的时间复杂度解决方案?
最近我参加了一个面试,面试官要求我“编写一个程序,从一个包含10亿个数字的数组中找出100个最大的数字”。
我只能给出一个蛮力解决方案,即以O(nlogn)时间复杂度对数组进行排序,并取最后100个数字。
Arrays.sort(array);
面试官正在寻找一个更好的时间复杂度,我尝试了几个其他的解决方案,但都没有回答他。有没有更好的时间复杂度解决方案?
当前回答
使用第n个元素得到第100个元素O(n) 迭代第二次,但只有一次,并输出大于此特定元素的所有元素。
请特别注意,第二步可能很容易并行计算!当你需要一百万个最大的元素时,它也会很有效。
其他回答
I would find out who had the time to put a billion numbers into an array and fire him. Must work for government. At least if you had a linked list you could insert a number into the middle without moving half a billion to make room. Even better a Btree allows for a binary search. Each comparison eliminates half of your total. A hash algorithm would allow you to populate the data structure like a checkerboard but not so good for sparse data. As it is your best bet is to have a solution array of 100 integers and keep track of the lowest number in your solution array so you can replace it when you come across a higher number in the original array. You would have to look at every element in the original array assuming it is not sorted to begin with.
您可以使用快速选择算法在(按顺序)索引[十亿-101]处查找数字 然后遍历这些数字找出比这个数字更大的数。
array={...the billion numbers...}
result[100];
pivot=QuickSelect(array,billion-101);//O(N)
for(i=0;i<billion;i++)//O(N)
if(array[i]>=pivot)
result.add(array[i]);
该算法时间为:2 X O(N) = O(N)(平均情况性能)
Thomas Jungblut建议的第二个选择是:
使用堆构建最大堆将花费O(N),然后前100个最大的数字将在堆的顶部,所有你需要的是把它们从堆(100 X O(Log(N))。
该算法时间为:O(N) + 100 X O(Log(N)) = O(N)
从十亿个数字中找到前100个最好使用包含100个元素的最小堆。
首先用遇到的前100个数字对最小堆进行质数。Min-heap将前100个数字中最小的存储在根(顶部)。
现在,当你继续计算其他数字时,只将它们与根数(100中最小的数)进行比较。
如果遇到的新数字大于最小堆的根,则将根替换为该数字,否则忽略它。
作为在最小堆中插入新数字的一部分,堆中最小的数字将移到顶部(根)。
一旦我们遍历了所有的数字,我们将得到最小堆中最大的100个数字。
我对此的直接反应是使用堆,但有一种方法可以使用QuickSelect,而不需要在任何时候保留所有的输入值。
创建一个大小为200的数组,并用前200个输入值填充它。运行QuickSelect并丢弃低100个位置,留下100个空闲位置。读入接下来的100个输入值并再次运行QuickSelect。继续执行,直到以100个批次为单位运行整个输入。
最后是前100个值。对于N个值,您运行QuickSelect大约N/100次。每个快速选择的代价大约是某个常数的200倍,所以总代价是某个常数的2N倍。在我看来,输入的大小是线性的,不管我在这个解释中硬连接的参数大小是100。
我做了我自己的代码,不确定它是否是“面试官”所寻找的
private static final int MAX=100;
PriorityQueue<Integer> queue = new PriorityQueue<>(MAX);
queue.add(array[0]);
for (int i=1;i<array.length;i++)
{
if(queue.peek()<array[i])
{
if(queue.size() >=MAX)
{
queue.poll();
}
queue.add(array[i]);
}
}