最近我参加了一个面试,面试官要求我“编写一个程序,从一个包含10亿个数字的数组中找出100个最大的数字”。
我只能给出一个蛮力解决方案,即以O(nlogn)时间复杂度对数组进行排序,并取最后100个数字。
Arrays.sort(array);
面试官正在寻找一个更好的时间复杂度,我尝试了几个其他的解决方案,但都没有回答他。有没有更好的时间复杂度解决方案?
最近我参加了一个面试,面试官要求我“编写一个程序,从一个包含10亿个数字的数组中找出100个最大的数字”。
我只能给出一个蛮力解决方案,即以O(nlogn)时间复杂度对数组进行排序,并取最后100个数字。
Arrays.sort(array);
面试官正在寻找一个更好的时间复杂度,我尝试了几个其他的解决方案,但都没有回答他。有没有更好的时间复杂度解决方案?
当前回答
使用第n个元素得到第100个元素O(n) 迭代第二次,但只有一次,并输出大于此特定元素的所有元素。
请特别注意,第二步可能很容易并行计算!当你需要一百万个最大的元素时,它也会很有效。
其他回答
使用第n个元素得到第100个元素O(n) 迭代第二次,但只有一次,并输出大于此特定元素的所有元素。
请特别注意,第二步可能很容易并行计算!当你需要一百万个最大的元素时,它也会很有效。
我做了我自己的代码,不确定它是否是“面试官”所寻找的
private static final int MAX=100;
PriorityQueue<Integer> queue = new PriorityQueue<>(MAX);
queue.add(array[0]);
for (int i=1;i<array.length;i++)
{
if(queue.peek()<array[i])
{
if(queue.size() >=MAX)
{
queue.poll();
}
queue.add(array[i]);
}
}
从十亿个数字中找到前100个最好使用包含100个元素的最小堆。
首先用遇到的前100个数字对最小堆进行质数。Min-heap将前100个数字中最小的存储在根(顶部)。
现在,当你继续计算其他数字时,只将它们与根数(100中最小的数)进行比较。
如果遇到的新数字大于最小堆的根,则将根替换为该数字,否则忽略它。
作为在最小堆中插入新数字的一部分,堆中最小的数字将移到顶部(根)。
一旦我们遍历了所有的数字,我们将得到最小堆中最大的100个数字。
我知道这可能会被埋没,但这是我对一个基MSD的变化的想法。
伪代码:
//billion is the array of 1 billion numbers
int[] billion = getMyBillionNumbers();
//this assumes these are 32-bit integers and we are using hex digits
int[][] mynums = int[8][16];
for number in billion
putInTop100Array(number)
function putInTop100Array(number){
//basically if we got past all the digits successfully
if(number == null)
return true;
msdIdx = getMsdIdx(number);
msd = getMsd(number);
//check if the idx above where we are is already full
if(mynums[msdIdx][msd+1] > 99) {
return false;
} else if(putInTop100Array(removeMSD(number)){
mynums[msdIdx][msd]++;
//we've found 100 digits here, no need to keep looking below where we are
if(mynums[msdIdx][msd] > 99){
for(int i = 0; i < mds; i++){
//making it 101 just so we can tell the difference
//between numbers where we actually found 101, and
//where we just set it
mynums[msdIdx][i] = 101;
}
}
return true;
}
return false;
}
函数getMsdIdx(int num)将返回最高位(非零)的下标。函数getMsd(int num)将返回最高位。函数removeMSD(int num)将从一个数字中删除最有效的数字并返回该数字(如果删除最有效的数字后什么都没有留下,则返回null)。
完成后,剩下的就是遍历mynums以获取前100位数字。这大概是这样的:
int[] nums = int[100];
int idx = 0;
for(int i = 7; i >= 0; i--){
int timesAdded = 0;
for(int j = 16; j >=0 && timesAdded < 100; j--){
for(int k = mynums[i][j]; k > 0; k--){
nums[idx] += j;
timesAdded++;
idx++;
}
}
}
我需要注意的是,尽管上面的图看起来时间复杂度很高,但实际上它只有O(7*100)左右。
快速解释一下这是为了做什么: 从本质上讲,这个系统试图基于数字中数字的索引和数字的值来使用2d数组中的每个数字。它使用这些值作为索引来跟踪数组中插入了多少数值。当达到100时,它会关闭所有“较低的分支”。
这个算法的时间大概是O(十亿*log(16)*7)+O(100)。我可能是错的。此外,这很可能需要调试,因为它有点复杂,我只是把它写在我的头上。
编辑:没有解释的反对票是没有帮助的。如果你认为这个答案不正确,请留下评论。我很确定,StackOverflow甚至告诉你这样做,当你向下投票。
求n个元素中最大的m个元素,其中n >>> m
最简单的解决方案,每个人都应该很明显,就是简单地做m次冒泡排序算法。
然后打印出数组的最后n个元素。
它不需要外部数据结构,并且使用了一种大家都知道的算法。
运行时间估计为O(m*n)。到目前为止最好的答案是O(nlog (m)),所以这个解决方案对于小m来说并不显着昂贵。
我并不是说这不能改进,但这是迄今为止最简单的解决方案。