最近我参加了一个面试,面试官要求我“编写一个程序,从一个包含10亿个数字的数组中找出100个最大的数字”。

我只能给出一个蛮力解决方案,即以O(nlogn)时间复杂度对数组进行排序,并取最后100个数字。

Arrays.sort(array);

面试官正在寻找一个更好的时间复杂度,我尝试了几个其他的解决方案,但都没有回答他。有没有更好的时间复杂度解决方案?


当前回答

使用第n个元素得到第100个元素O(n) 迭代第二次,但只有一次,并输出大于此特定元素的所有元素。

请特别注意,第二步可能很容易并行计算!当你需要一百万个最大的元素时,它也会很有效。

其他回答

使用第n个元素得到第100个元素O(n) 迭代第二次,但只有一次,并输出大于此特定元素的所有元素。

请特别注意,第二步可能很容易并行计算!当你需要一百万个最大的元素时,它也会很有效。

我做了我自己的代码,不确定它是否是“面试官”所寻找的

private static final int MAX=100;
 PriorityQueue<Integer> queue = new PriorityQueue<>(MAX);
        queue.add(array[0]);
        for (int i=1;i<array.length;i++)
        {

            if(queue.peek()<array[i])
            {
                if(queue.size() >=MAX)
                {
                    queue.poll();
                }
                queue.add(array[i]);

            }

        }

从十亿个数字中找到前100个最好使用包含100个元素的最小堆。

首先用遇到的前100个数字对最小堆进行质数。Min-heap将前100个数字中最小的存储在根(顶部)。

现在,当你继续计算其他数字时,只将它们与根数(100中最小的数)进行比较。

如果遇到的新数字大于最小堆的根,则将根替换为该数字,否则忽略它。

作为在最小堆中插入新数字的一部分,堆中最小的数字将移到顶部(根)。

一旦我们遍历了所有的数字,我们将得到最小堆中最大的100个数字。

我知道这可能会被埋没,但这是我对一个基MSD的变化的想法。

伪代码:

//billion is the array of 1 billion numbers
int[] billion = getMyBillionNumbers();
//this assumes these are 32-bit integers and we are using hex digits
int[][] mynums = int[8][16];

for number in billion
    putInTop100Array(number)

function putInTop100Array(number){
    //basically if we got past all the digits successfully
    if(number == null)
        return true;
    msdIdx = getMsdIdx(number);
    msd = getMsd(number);
    //check if the idx above where we are is already full
    if(mynums[msdIdx][msd+1] > 99) {
        return false;
    } else if(putInTop100Array(removeMSD(number)){
        mynums[msdIdx][msd]++;
        //we've found 100 digits here, no need to keep looking below where we are
        if(mynums[msdIdx][msd] > 99){
           for(int i = 0; i < mds; i++){
              //making it 101 just so we can tell the difference
              //between numbers where we actually found 101, and 
              //where we just set it
              mynums[msdIdx][i] = 101;
           }
        }
        return true;
    }
    return false;
}

函数getMsdIdx(int num)将返回最高位(非零)的下标。函数getMsd(int num)将返回最高位。函数removeMSD(int num)将从一个数字中删除最有效的数字并返回该数字(如果删除最有效的数字后什么都没有留下,则返回null)。

完成后,剩下的就是遍历mynums以获取前100位数字。这大概是这样的:

int[] nums = int[100];
int idx = 0;
for(int i = 7; i >= 0; i--){
    int timesAdded = 0;
    for(int j = 16; j >=0 && timesAdded < 100; j--){
        for(int k = mynums[i][j]; k > 0; k--){
            nums[idx] += j;
            timesAdded++;
            idx++;
        }
    }
}

我需要注意的是,尽管上面的图看起来时间复杂度很高,但实际上它只有O(7*100)左右。

快速解释一下这是为了做什么: 从本质上讲,这个系统试图基于数字中数字的索引和数字的值来使用2d数组中的每个数字。它使用这些值作为索引来跟踪数组中插入了多少数值。当达到100时,它会关闭所有“较低的分支”。

这个算法的时间大概是O(十亿*log(16)*7)+O(100)。我可能是错的。此外,这很可能需要调试,因为它有点复杂,我只是把它写在我的头上。

编辑:没有解释的反对票是没有帮助的。如果你认为这个答案不正确,请留下评论。我很确定,StackOverflow甚至告诉你这样做,当你向下投票。

求n个元素中最大的m个元素,其中n >>> m

最简单的解决方案,每个人都应该很明显,就是简单地做m次冒泡排序算法。

然后打印出数组的最后n个元素。

它不需要外部数据结构,并且使用了一种大家都知道的算法。

运行时间估计为O(m*n)。到目前为止最好的答案是O(nlog (m)),所以这个解决方案对于小m来说并不显着昂贵。

我并不是说这不能改进,但这是迄今为止最简单的解决方案。