最近我参加了一个面试,面试官要求我“编写一个程序,从一个包含10亿个数字的数组中找出100个最大的数字”。

我只能给出一个蛮力解决方案,即以O(nlogn)时间复杂度对数组进行排序,并取最后100个数字。

Arrays.sort(array);

面试官正在寻找一个更好的时间复杂度,我尝试了几个其他的解决方案,但都没有回答他。有没有更好的时间复杂度解决方案?


当前回答

受@ron teller回答的启发,这里有一个简单的C程序来做你想做的事情。

#include <stdlib.h>
#include <stdio.h>

#define TOTAL_NUMBERS 1000000000
#define N_TOP_NUMBERS 100

int 
compare_function(const void *first, const void *second)
{
    int a = *((int *) first);
    int b = *((int *) second);
    if (a > b){
        return 1;
    }
    if (a < b){
        return -1;
    }
    return 0;
}

int 
main(int argc, char ** argv)
{
    if(argc != 2){
        printf("please supply a path to a binary file containing 1000000000"
               "integers of this machine's wordlength and endianness\n");
        exit(1);
    }
    FILE * f = fopen(argv[1], "r");
    if(!f){
        exit(1);
    }
    int top100[N_TOP_NUMBERS] = {0};
    int sorts = 0;
    for (int i = 0; i < TOTAL_NUMBERS; i++){
        int number;
        int ok;
        ok = fread(&number, sizeof(int), 1, f);
        if(!ok){
            printf("not enough numbers!\n");
            break;
        }
        if(number > top100[0]){
            sorts++;
            top100[0] = number;
            qsort(top100, N_TOP_NUMBERS, sizeof(int), compare_function);
        }

    }
    printf("%d sorts made\n"
    "the top 100 integers in %s are:\n",
    sorts, argv[1] );
    for (int i = 0; i < N_TOP_NUMBERS; i++){
        printf("%d\n", top100[i]);
    }
    fclose(f);
    exit(0);
}

在我的机器上(具有快速SSD的core i3),它需要25秒,并进行1724种排序。 我用dd if=/dev/urandom/ count=1000000000 bs=1生成了一个二进制文件。

显然,一次只从磁盘读取4个字节会有性能问题,但这只是为了举例。好的一面是,只需要很少的内存。

其他回答

简单的解决方案是使用优先队列,将前100个数字添加到队列中,并跟踪队列中最小的数字,然后遍历其他10亿个数字,每当我们发现一个比优先队列中最大的数字大的数字时,我们删除最小的数字,添加新的数字,并再次跟踪队列中最小的数字。

如果这些数字是随机顺序的,这就很好了,因为当我们迭代10亿个随机数字时,下一个数字是目前为止最大的100个数字之一的情况是非常罕见的。但这些数字可能不是随机的。如果数组已经按升序排序,则始终向优先队列插入一个元素。

我们先从数组中选取100,000个随机数。为了避免可能很慢的随机访问,我们添加了400个随机组,每个组有250个连续的数字。通过这种随机选择,我们可以非常确定,剩下的数字中很少有进入前100位的,因此执行时间将非常接近于一个简单的循环,将10亿个数字与某个最大值进行比较。

你可以保留一个最大的100个数字的优先队列,遍历10亿个数字。每当遇到大于队列中最小数字(队列头)的数字时,删除队列头并将新数字添加到队列中。

用堆实现的优先级队列的插入+删除复杂度为O(log K).(其中K = 100,要查找的元素数量。N = 10亿,数组中元素的总数)。

在最坏的情况下,你得到十亿*log2(100)这比十亿*log2(十亿)对于O(N log N)基于比较的排序要好。

一般来说,如果你需要一组N个数字中最大的K个数字,复杂度是O(N log K)而不是O(N log N),当K与N相比非常小时,这可能非常重要。


这种优先级队列算法的预期时间非常有趣,因为在每次迭代中可能会出现插入,也可能不会出现插入。

第i个数字插入队列的概率是一个随机变量大于同一分布中至少i- k个随机变量的概率(前k个数字自动添加到队列中)。我们可以使用顺序统计(见链接)来计算这个概率。

例如,假设这些数字是从{0,1}中均匀随机选择的,第(i-k)个数字(从i个数字中)的期望值为(i-k)/i,并且随机变量大于此值的概率为1-[(i-k)/i] = k/i。

因此,期望插入数为:

期望运行时间可表示为:

(k时间生成包含前k个元素的队列,然后是n-k个比较,以及如上所述的预期插入次数,每次插入的平均时间为log(k)/2)

注意,当N与K相比非常大时,这个表达式更接近于N而不是nlog K。这有点直观,就像在这个问题的情况下,即使经过10,000次迭代(与十亿次相比非常小),一个数字被插入队列的机会也非常小。

但是我们不知道数组的值是均匀分布的。它们可能趋向于增加,在这种情况下,大多数或所有数字将成为所见最大的100个数字集合的新候选数。这个算法的最坏情况是O(N log K)

或者如果它们呈递减的趋势,最大的100个数字中的大多数将会非常早,我们的最佳情况运行时间本质上是O(N + K log K)对于K比N小得多的K,它就是O(N)


脚注1:O(N)整数排序/直方图

计数排序或基数排序都是O(N),但通常有更大的常数因子,使它们在实践中比比较排序更差。在某些特殊情况下,它们实际上相当快,主要是对于窄整数类型。

例如,计数排序在数字很小的情况下表现良好。16位数字只需要2^16个计数器的数组。而不是实际展开到一个排序的数组,你可以扫描你建立的直方图作为计数排序的一部分。

在对数组进行直方图化之后,您可以快速回答任何顺序统计的查询,例如最大的99个数字,最大的200到100个数字)32位数字将计数分散到一个更大的数组或计数器哈希表中,可能需要16gib的内存(每个2^32个计数器4字节)。在真正的cpu上,可能会有很多TLB和缓存失误,不像2^16个元素的数组,L2缓存通常会命中。

类似地,Radix Sort可以在第一次传递后只查看顶部的桶。但常数因子仍然可能大于logk,这取决于K。

注意,每个计数器的大小足够大,即使所有N个整数都是重复的,也不会溢出。10亿略小于2^30,所以一个30位无符号计数器就足够了。32位有符号或无符号整数就可以了。

如果有更多的计数器,则可能需要64位计数器,初始化为零并随机访问需要占用两倍的内存。或者是少数溢出16或32位整数的计数器的哨兵值,以指示计数的其余部分在其他地方(在一个小字典中,例如映射到64位计数器的哈希表中)。

您可以使用快速选择算法在(按顺序)索引[十亿-101]处查找数字 然后遍历这些数字找出比这个数字更大的数。

array={...the billion numbers...} 
result[100];

pivot=QuickSelect(array,billion-101);//O(N)

for(i=0;i<billion;i++)//O(N)
   if(array[i]>=pivot)
      result.add(array[i]);

该算法时间为:2 X O(N) = O(N)(平均情况性能)

Thomas Jungblut建议的第二个选择是:

使用堆构建最大堆将花费O(N),然后前100个最大的数字将在堆的顶部,所有你需要的是把它们从堆(100 X O(Log(N))。

该算法时间为:O(N) + 100 X O(Log(N)) = O(N)

受@ron teller回答的启发,这里有一个简单的C程序来做你想做的事情。

#include <stdlib.h>
#include <stdio.h>

#define TOTAL_NUMBERS 1000000000
#define N_TOP_NUMBERS 100

int 
compare_function(const void *first, const void *second)
{
    int a = *((int *) first);
    int b = *((int *) second);
    if (a > b){
        return 1;
    }
    if (a < b){
        return -1;
    }
    return 0;
}

int 
main(int argc, char ** argv)
{
    if(argc != 2){
        printf("please supply a path to a binary file containing 1000000000"
               "integers of this machine's wordlength and endianness\n");
        exit(1);
    }
    FILE * f = fopen(argv[1], "r");
    if(!f){
        exit(1);
    }
    int top100[N_TOP_NUMBERS] = {0};
    int sorts = 0;
    for (int i = 0; i < TOTAL_NUMBERS; i++){
        int number;
        int ok;
        ok = fread(&number, sizeof(int), 1, f);
        if(!ok){
            printf("not enough numbers!\n");
            break;
        }
        if(number > top100[0]){
            sorts++;
            top100[0] = number;
            qsort(top100, N_TOP_NUMBERS, sizeof(int), compare_function);
        }

    }
    printf("%d sorts made\n"
    "the top 100 integers in %s are:\n",
    sorts, argv[1] );
    for (int i = 0; i < N_TOP_NUMBERS; i++){
        printf("%d\n", top100[i]);
    }
    fclose(f);
    exit(0);
}

在我的机器上(具有快速SSD的core i3),它需要25秒,并进行1724种排序。 我用dd if=/dev/urandom/ count=1000000000 bs=1生成了一个二进制文件。

显然,一次只从磁盘读取4个字节会有性能问题,但这只是为了举例。好的一面是,只需要很少的内存。

一个非常简单的解决方案是遍历该数组100次。也就是O(n)

每次取出最大的数字(并将其值更改为最小值,以便在下一个迭代中看不到它,或者跟踪以前答案的索引(通过跟踪索引,原始数组可以有多个相同的数字))。经过100次迭代,就得到了最大的100个数字。