最近我参加了一个面试,面试官要求我“编写一个程序,从一个包含10亿个数字的数组中找出100个最大的数字”。

我只能给出一个蛮力解决方案,即以O(nlogn)时间复杂度对数组进行排序,并取最后100个数字。

Arrays.sort(array);

面试官正在寻找一个更好的时间复杂度,我尝试了几个其他的解决方案,但都没有回答他。有没有更好的时间复杂度解决方案?


当前回答

我知道这可能会被埋没,但这是我对一个基MSD的变化的想法。

伪代码:

//billion is the array of 1 billion numbers
int[] billion = getMyBillionNumbers();
//this assumes these are 32-bit integers and we are using hex digits
int[][] mynums = int[8][16];

for number in billion
    putInTop100Array(number)

function putInTop100Array(number){
    //basically if we got past all the digits successfully
    if(number == null)
        return true;
    msdIdx = getMsdIdx(number);
    msd = getMsd(number);
    //check if the idx above where we are is already full
    if(mynums[msdIdx][msd+1] > 99) {
        return false;
    } else if(putInTop100Array(removeMSD(number)){
        mynums[msdIdx][msd]++;
        //we've found 100 digits here, no need to keep looking below where we are
        if(mynums[msdIdx][msd] > 99){
           for(int i = 0; i < mds; i++){
              //making it 101 just so we can tell the difference
              //between numbers where we actually found 101, and 
              //where we just set it
              mynums[msdIdx][i] = 101;
           }
        }
        return true;
    }
    return false;
}

函数getMsdIdx(int num)将返回最高位(非零)的下标。函数getMsd(int num)将返回最高位。函数removeMSD(int num)将从一个数字中删除最有效的数字并返回该数字(如果删除最有效的数字后什么都没有留下,则返回null)。

完成后,剩下的就是遍历mynums以获取前100位数字。这大概是这样的:

int[] nums = int[100];
int idx = 0;
for(int i = 7; i >= 0; i--){
    int timesAdded = 0;
    for(int j = 16; j >=0 && timesAdded < 100; j--){
        for(int k = mynums[i][j]; k > 0; k--){
            nums[idx] += j;
            timesAdded++;
            idx++;
        }
    }
}

我需要注意的是,尽管上面的图看起来时间复杂度很高,但实际上它只有O(7*100)左右。

快速解释一下这是为了做什么: 从本质上讲,这个系统试图基于数字中数字的索引和数字的值来使用2d数组中的每个数字。它使用这些值作为索引来跟踪数组中插入了多少数值。当达到100时,它会关闭所有“较低的分支”。

这个算法的时间大概是O(十亿*log(16)*7)+O(100)。我可能是错的。此外,这很可能需要调试,因为它有点复杂,我只是把它写在我的头上。

编辑:没有解释的反对票是没有帮助的。如果你认为这个答案不正确,请留下评论。我很确定,StackOverflow甚至告诉你这样做,当你向下投票。

其他回答

这个问题只需一行c++代码就可以用N log(100)的复杂度(而不是N log N)来回答。

 std::vector<int> myvector = ...; // Define your 1 billion numbers. 
                                 // Assumed integer just for concreteness 
 std::partial_sort (myvector.begin(), myvector.begin()+100, myvector.end());

最终答案将是一个向量,其中前100个元素保证是数组中最大的100个数字,而其余元素是无序的

c++ STL(标准库)对于这类问题非常方便。

注意:我并不是说这是最佳的解决方案,但它可以挽救你的面试。

复杂度为O(N)

首先创建一个100个int的数组,将这个数组的第一个元素初始化为N个值的第一个元素, 用另一个变量CurrentBig来跟踪当前元素的索引

遍历N个值

if N[i] > M[CurrentBig] {

M[CurrentBig]=N[i]; ( overwrite the current value with the newly found larger number)

CurrentBig++;      ( go to the next position in the M array)

CurrentBig %= 100; ( modulo arithmetic saves you from using lists/hashes etc.)

M[CurrentBig]=N[i];    ( pick up the current value again to use it for the next Iteration of the N array)

} 

完成后,从CurrentBig中打印M数组100次模100:-) 对于学生:确保代码的最后一行在代码退出之前没有胜过有效数据

你可以遍历这些数字,需要O(n)

只要发现一个大于当前最小值的值,就将新值添加到一个大小为100的循环队列中。

循环队列的最小值就是新的比较值。继续往队列中添加。如果已满,则从队列中提取最小值。

受@ron teller回答的启发,这里有一个简单的C程序来做你想做的事情。

#include <stdlib.h>
#include <stdio.h>

#define TOTAL_NUMBERS 1000000000
#define N_TOP_NUMBERS 100

int 
compare_function(const void *first, const void *second)
{
    int a = *((int *) first);
    int b = *((int *) second);
    if (a > b){
        return 1;
    }
    if (a < b){
        return -1;
    }
    return 0;
}

int 
main(int argc, char ** argv)
{
    if(argc != 2){
        printf("please supply a path to a binary file containing 1000000000"
               "integers of this machine's wordlength and endianness\n");
        exit(1);
    }
    FILE * f = fopen(argv[1], "r");
    if(!f){
        exit(1);
    }
    int top100[N_TOP_NUMBERS] = {0};
    int sorts = 0;
    for (int i = 0; i < TOTAL_NUMBERS; i++){
        int number;
        int ok;
        ok = fread(&number, sizeof(int), 1, f);
        if(!ok){
            printf("not enough numbers!\n");
            break;
        }
        if(number > top100[0]){
            sorts++;
            top100[0] = number;
            qsort(top100, N_TOP_NUMBERS, sizeof(int), compare_function);
        }

    }
    printf("%d sorts made\n"
    "the top 100 integers in %s are:\n",
    sorts, argv[1] );
    for (int i = 0; i < N_TOP_NUMBERS; i++){
        printf("%d\n", top100[i]);
    }
    fclose(f);
    exit(0);
}

在我的机器上(具有快速SSD的core i3),它需要25秒,并进行1724种排序。 我用dd if=/dev/urandom/ count=1000000000 bs=1生成了一个二进制文件。

显然,一次只从磁盘读取4个字节会有性能问题,但这只是为了举例。好的一面是,只需要很少的内存。

另一个O(n)算法-

该算法通过消元法找到最大的100个

考虑所有的百万数字的二进制表示。从最重要的位开始。确定MSB是否为1可以通过布尔运算与适当的数字相乘来完成。如果百万个数字中有超过100个1,就去掉其他带0的数字。现在剩下的数从下一个最有效的位开始。计算排除后剩余数字的数量,只要这个数字大于100,就继续进行。

主要的布尔运算可以在图形处理器上并行完成