最近我参加了一个面试,面试官要求我“编写一个程序,从一个包含10亿个数字的数组中找出100个最大的数字”。
我只能给出一个蛮力解决方案,即以O(nlogn)时间复杂度对数组进行排序,并取最后100个数字。
Arrays.sort(array);
面试官正在寻找一个更好的时间复杂度,我尝试了几个其他的解决方案,但都没有回答他。有没有更好的时间复杂度解决方案?
最近我参加了一个面试,面试官要求我“编写一个程序,从一个包含10亿个数字的数组中找出100个最大的数字”。
我只能给出一个蛮力解决方案,即以O(nlogn)时间复杂度对数组进行排序,并取最后100个数字。
Arrays.sort(array);
面试官正在寻找一个更好的时间复杂度,我尝试了几个其他的解决方案,但都没有回答他。有没有更好的时间复杂度解决方案?
当前回答
我知道这可能会被埋没,但这是我对一个基MSD的变化的想法。
伪代码:
//billion is the array of 1 billion numbers
int[] billion = getMyBillionNumbers();
//this assumes these are 32-bit integers and we are using hex digits
int[][] mynums = int[8][16];
for number in billion
putInTop100Array(number)
function putInTop100Array(number){
//basically if we got past all the digits successfully
if(number == null)
return true;
msdIdx = getMsdIdx(number);
msd = getMsd(number);
//check if the idx above where we are is already full
if(mynums[msdIdx][msd+1] > 99) {
return false;
} else if(putInTop100Array(removeMSD(number)){
mynums[msdIdx][msd]++;
//we've found 100 digits here, no need to keep looking below where we are
if(mynums[msdIdx][msd] > 99){
for(int i = 0; i < mds; i++){
//making it 101 just so we can tell the difference
//between numbers where we actually found 101, and
//where we just set it
mynums[msdIdx][i] = 101;
}
}
return true;
}
return false;
}
函数getMsdIdx(int num)将返回最高位(非零)的下标。函数getMsd(int num)将返回最高位。函数removeMSD(int num)将从一个数字中删除最有效的数字并返回该数字(如果删除最有效的数字后什么都没有留下,则返回null)。
完成后,剩下的就是遍历mynums以获取前100位数字。这大概是这样的:
int[] nums = int[100];
int idx = 0;
for(int i = 7; i >= 0; i--){
int timesAdded = 0;
for(int j = 16; j >=0 && timesAdded < 100; j--){
for(int k = mynums[i][j]; k > 0; k--){
nums[idx] += j;
timesAdded++;
idx++;
}
}
}
我需要注意的是,尽管上面的图看起来时间复杂度很高,但实际上它只有O(7*100)左右。
快速解释一下这是为了做什么: 从本质上讲,这个系统试图基于数字中数字的索引和数字的值来使用2d数组中的每个数字。它使用这些值作为索引来跟踪数组中插入了多少数值。当达到100时,它会关闭所有“较低的分支”。
这个算法的时间大概是O(十亿*log(16)*7)+O(100)。我可能是错的。此外,这很可能需要调试,因为它有点复杂,我只是把它写在我的头上。
编辑:没有解释的反对票是没有帮助的。如果你认为这个答案不正确,请留下评论。我很确定,StackOverflow甚至告诉你这样做,当你向下投票。
其他回答
虽然其他的quickselect解决方案已经被否决,但事实是quickselect将比使用大小为100的队列更快地找到解决方案。在比较方面,Quickselect的预期运行时间为2n + o(n)。一个非常简单的实现是
array = input array of length n
r = Quickselect(array,n-100)
result = array of length 100
for(i = 1 to n)
if(array[i]>r)
add array[i] to result
这平均需要3n + o(n)次比较。此外,quickselect将数组中最大的100个项保留在最右边的100个位置,这可以提高效率。所以实际上,运行时间可以提高到2n+o(n)。
有一个问题是,这是预期的运行时间,而不是最坏的情况,但通过使用一个不错的主元选择策略(例如,随机选择21个元素,并选择这21个元素的中位数作为主元),那么比较的数量可以保证高概率为(2+c)n对于任意小的常数c。
事实上,通过使用优化的抽样策略(例如随机抽样平方根(n)个元素,并选择第99百分位数),对于任意小的c(假设K,要选择的元素数量为o(n)),运行时间可以降至(1+c)n + o(n)。
另一方面,使用大小为100的队列将需要O(log(100)n)个比较,log以2为底100的对数大约等于6.6。
如果我们从更抽象的意义上考虑这个问题,即从大小为N的数组中选择最大的K个元素,其中K=o(N),但K和N都趋于无穷大,那么快速选择版本的运行时间将是o(N),队列版本的运行时间将是o(N log K),因此在这种意义上,快速选择也渐近地更好。
在注释中,提到队列解决方案将在随机输入的预期时间N + K log N内运行。当然,随机输入假设永远不会成立,除非问题明确地说明了这一点。队列解决方案可以以随机顺序遍历数组,但这将产生对随机数生成器的N次调用的额外成本,以及排列整个输入数组或分配一个长度为N的包含随机索引的新数组。
如果问题不允许您移动原始数组中的元素,并且分配内存的成本很高,因此不能复制数组,那就是另一回事了。但严格地从运行时间来看,这是最好的解决方案。
如果在面试中被问到这个问题,面试官可能想看你解决问题的过程,而不仅仅是你的算法知识。
The description is quite general so maybe you can ask him the range or meaning of these numbers to make the problem clear. Doing this may impress an interviewer. If, for example, these numbers stands for people's age then it's a much easier problem. With a reasonable assumption that nobody alive is older than 200, you can use an integer array of size 200 (maybe 201) to count the number of people with the same age in just one iteration. Here the index means the age. After this it's a piece of cake to find 100 largest numbers. By the way this algorithm is called counting sort.
无论如何,让问题更具体、更清楚对你在面试中是有好处的。
你可以保留一个最大的100个数字的优先队列,遍历10亿个数字。每当遇到大于队列中最小数字(队列头)的数字时,删除队列头并将新数字添加到队列中。
用堆实现的优先级队列的插入+删除复杂度为O(log K).(其中K = 100,要查找的元素数量。N = 10亿,数组中元素的总数)。
在最坏的情况下,你得到十亿*log2(100)这比十亿*log2(十亿)对于O(N log N)基于比较的排序要好。
一般来说,如果你需要一组N个数字中最大的K个数字,复杂度是O(N log K)而不是O(N log N),当K与N相比非常小时,这可能非常重要。
这种优先级队列算法的预期时间非常有趣,因为在每次迭代中可能会出现插入,也可能不会出现插入。
第i个数字插入队列的概率是一个随机变量大于同一分布中至少i- k个随机变量的概率(前k个数字自动添加到队列中)。我们可以使用顺序统计(见链接)来计算这个概率。
例如,假设这些数字是从{0,1}中均匀随机选择的,第(i-k)个数字(从i个数字中)的期望值为(i-k)/i,并且随机变量大于此值的概率为1-[(i-k)/i] = k/i。
因此,期望插入数为:
期望运行时间可表示为:
(k时间生成包含前k个元素的队列,然后是n-k个比较,以及如上所述的预期插入次数,每次插入的平均时间为log(k)/2)
注意,当N与K相比非常大时,这个表达式更接近于N而不是nlog K。这有点直观,就像在这个问题的情况下,即使经过10,000次迭代(与十亿次相比非常小),一个数字被插入队列的机会也非常小。
但是我们不知道数组的值是均匀分布的。它们可能趋向于增加,在这种情况下,大多数或所有数字将成为所见最大的100个数字集合的新候选数。这个算法的最坏情况是O(N log K)
或者如果它们呈递减的趋势,最大的100个数字中的大多数将会非常早,我们的最佳情况运行时间本质上是O(N + K log K)对于K比N小得多的K,它就是O(N)
脚注1:O(N)整数排序/直方图
计数排序或基数排序都是O(N),但通常有更大的常数因子,使它们在实践中比比较排序更差。在某些特殊情况下,它们实际上相当快,主要是对于窄整数类型。
例如,计数排序在数字很小的情况下表现良好。16位数字只需要2^16个计数器的数组。而不是实际展开到一个排序的数组,你可以扫描你建立的直方图作为计数排序的一部分。
在对数组进行直方图化之后,您可以快速回答任何顺序统计的查询,例如最大的99个数字,最大的200到100个数字)32位数字将计数分散到一个更大的数组或计数器哈希表中,可能需要16gib的内存(每个2^32个计数器4字节)。在真正的cpu上,可能会有很多TLB和缓存失误,不像2^16个元素的数组,L2缓存通常会命中。
类似地,Radix Sort可以在第一次传递后只查看顶部的桶。但常数因子仍然可能大于logk,这取决于K。
注意,每个计数器的大小足够大,即使所有N个整数都是重复的,也不会溢出。10亿略小于2^30,所以一个30位无符号计数器就足够了。32位有符号或无符号整数就可以了。
如果有更多的计数器,则可能需要64位计数器,初始化为零并随机访问需要占用两倍的内存。或者是少数溢出16或32位整数的计数器的哨兵值,以指示计数的其余部分在其他地方(在一个小字典中,例如映射到64位计数器的哈希表中)。
求n个元素中最大的m个元素,其中n >>> m
最简单的解决方案,每个人都应该很明显,就是简单地做m次冒泡排序算法。
然后打印出数组的最后n个元素。
它不需要外部数据结构,并且使用了一种大家都知道的算法。
运行时间估计为O(m*n)。到目前为止最好的答案是O(nlog (m)),所以这个解决方案对于小m来说并不显着昂贵。
我并不是说这不能改进,但这是迄今为止最简单的解决方案。
您可以使用快速选择算法在(按顺序)索引[十亿-101]处查找数字 然后遍历这些数字找出比这个数字更大的数。
array={...the billion numbers...}
result[100];
pivot=QuickSelect(array,billion-101);//O(N)
for(i=0;i<billion;i++)//O(N)
if(array[i]>=pivot)
result.add(array[i]);
该算法时间为:2 X O(N) = O(N)(平均情况性能)
Thomas Jungblut建议的第二个选择是:
使用堆构建最大堆将花费O(N),然后前100个最大的数字将在堆的顶部,所有你需要的是把它们从堆(100 X O(Log(N))。
该算法时间为:O(N) + 100 X O(Log(N)) = O(N)