最近我参加了一个面试,面试官要求我“编写一个程序,从一个包含10亿个数字的数组中找出100个最大的数字”。

我只能给出一个蛮力解决方案,即以O(nlogn)时间复杂度对数组进行排序,并取最后100个数字。

Arrays.sort(array);

面试官正在寻找一个更好的时间复杂度,我尝试了几个其他的解决方案,但都没有回答他。有没有更好的时间复杂度解决方案?


当前回答

Time ~ O(100 * N)
Space ~ O(100 + N)

创建一个包含100个空槽的空列表 对于输入列表中的每个数字: 如果数字小于第一个,跳过 否则用这个数字代替它 然后,将数字通过相邻的交换;直到它比下一个小 返回列表


注意:如果log(input-list.size) + c < 100,那么最佳的方法是对输入列表进行排序,然后拆分前100项。

其他回答

复杂度为O(N)

首先创建一个100个int的数组,将这个数组的第一个元素初始化为N个值的第一个元素, 用另一个变量CurrentBig来跟踪当前元素的索引

遍历N个值

if N[i] > M[CurrentBig] {

M[CurrentBig]=N[i]; ( overwrite the current value with the newly found larger number)

CurrentBig++;      ( go to the next position in the M array)

CurrentBig %= 100; ( modulo arithmetic saves you from using lists/hashes etc.)

M[CurrentBig]=N[i];    ( pick up the current value again to use it for the next Iteration of the N array)

} 

完成后,从CurrentBig中打印M数组100次模100:-) 对于学生:确保代码的最后一行在代码退出之前没有胜过有效数据

另一个O(n)算法-

该算法通过消元法找到最大的100个

考虑所有的百万数字的二进制表示。从最重要的位开始。确定MSB是否为1可以通过布尔运算与适当的数字相乘来完成。如果百万个数字中有超过100个1,就去掉其他带0的数字。现在剩下的数从下一个最有效的位开始。计算排除后剩余数字的数量,只要这个数字大于100,就继续进行。

主要的布尔运算可以在图形处理器上并行完成

如果在面试中被问到这个问题,面试官可能想看你解决问题的过程,而不仅仅是你的算法知识。

The description is quite general so maybe you can ask him the range or meaning of these numbers to make the problem clear. Doing this may impress an interviewer. If, for example, these numbers stands for people's age then it's a much easier problem. With a reasonable assumption that nobody alive is older than 200, you can use an integer array of size 200 (maybe 201) to count the number of people with the same age in just one iteration. Here the index means the age. After this it's a piece of cake to find 100 largest numbers. By the way this algorithm is called counting sort.

无论如何,让问题更具体、更清楚对你在面试中是有好处的。

 Although in this question we should search for top 100 numbers, I will 
 generalize things and write x. Still, I will treat x as constant value.

n中最大的x元素:

我将调用返回值LIST。它是一个x元素的集合(在我看来应该是链表)

First x elements are taken from pool "as they come" and sorted in LIST (this is done in constant time since x is treated as constant - O( x log(x) ) time) For every element that comes next we check if it is bigger than smallest element in LIST and if is we pop out the smallest and insert current element to LIST. Since that is ordered list every element should find its place in logarithmic time (binary search) and since it is ordered list insertion is not a problem. Every step is also done in constant time ( O(log(x) ) time ).

那么,最坏的情况是什么?

xlog(x)+(n-x)(log(x)+1)=nlog(x)+n- x

最坏情况是O(n)时间。+1是检查数字是否大于LIST中最小的数字。平均情况的预期时间将取决于这n个元素的数学分布。

可能的改进

在最坏的情况下,这个算法可以稍微改进,但恕我直言(我无法证明这一点),这会降低平均行为。渐近行为是一样的。

该算法的改进在于,我们将不检查元素是否大于最小值。对于每个元素,我们将尝试插入它,如果它小于最小值,我们将忽略它。尽管如果我们只考虑我们将面临的最坏的情况,这听起来很荒谬

x log(x) + (n-x)log(x) = nlog(x)

操作。

对于这个用例,我没有看到任何进一步的改进。但是你必须问自己,如果我要对不同的x做多于log(n)次呢?显然,我们会以O(nlog (n))为单位对数组进行排序,并在需要时提取x元素。

这个问题只需一行c++代码就可以用N log(100)的复杂度(而不是N log N)来回答。

 std::vector<int> myvector = ...; // Define your 1 billion numbers. 
                                 // Assumed integer just for concreteness 
 std::partial_sort (myvector.begin(), myvector.begin()+100, myvector.end());

最终答案将是一个向量,其中前100个元素保证是数组中最大的100个数字,而其余元素是无序的

c++ STL(标准库)对于这类问题非常方便。

注意:我并不是说这是最佳的解决方案,但它可以挽救你的面试。