最近我参加了一个面试,面试官要求我“编写一个程序,从一个包含10亿个数字的数组中找出100个最大的数字”。
我只能给出一个蛮力解决方案,即以O(nlogn)时间复杂度对数组进行排序,并取最后100个数字。
Arrays.sort(array);
面试官正在寻找一个更好的时间复杂度,我尝试了几个其他的解决方案,但都没有回答他。有没有更好的时间复杂度解决方案?
最近我参加了一个面试,面试官要求我“编写一个程序,从一个包含10亿个数字的数组中找出100个最大的数字”。
我只能给出一个蛮力解决方案,即以O(nlogn)时间复杂度对数组进行排序,并取最后100个数字。
Arrays.sort(array);
面试官正在寻找一个更好的时间复杂度,我尝试了几个其他的解决方案,但都没有回答他。有没有更好的时间复杂度解决方案?
当前回答
Time ~ O(100 * N)
Space ~ O(100 + N)
创建一个包含100个空槽的空列表 对于输入列表中的每个数字: 如果数字小于第一个,跳过 否则用这个数字代替它 然后,将数字通过相邻的交换;直到它比下一个小 返回列表
注意:如果log(input-list.size) + c < 100,那么最佳的方法是对输入列表进行排序,然后拆分前100项。
其他回答
我意识到这被标记为“算法”,但会抛出一些其他选项,因为它可能也应该被标记为“面试”。
10亿个数字的来源是什么?如果它是一个数据库,那么“从表中按值顺序选择值desc limit 100”就可以很好地完成工作-可能有方言差异。
这是一次性的,还是会重复发生?如果重复,频率是多少?如果它是一次性的,数据在一个文件中,那么'cat srcfile | sort(根据需要选择)| head -100'将让你快速完成有偿工作,而计算机处理这些琐碎的琐事。
如果重复,你会建议选择任何合适的方法来获得初始答案并存储/缓存结果,这样你就可以连续地报告前100名。
Finally, there is this consideration. Are you looking for an entry level job and interviewing with a geeky manager or future co-worker? If so, then you can toss out all manner of approaches describing the relative technical pros and cons. If you are looking for a more managerial job, then approach it like a manager would, concerned with the development and maintenance costs of the solution, and say "thank you very much" and leave if that is the interviewer wants to focus on CS trivia. He and you would be unlikely to have much advancement potential there.
祝你下次面试好运。
Although in this question we should search for top 100 numbers, I will
generalize things and write x. Still, I will treat x as constant value.
n中最大的x元素:
我将调用返回值LIST。它是一个x元素的集合(在我看来应该是链表)
First x elements are taken from pool "as they come" and sorted in LIST (this is done in constant time since x is treated as constant - O( x log(x) ) time) For every element that comes next we check if it is bigger than smallest element in LIST and if is we pop out the smallest and insert current element to LIST. Since that is ordered list every element should find its place in logarithmic time (binary search) and since it is ordered list insertion is not a problem. Every step is also done in constant time ( O(log(x) ) time ).
那么,最坏的情况是什么?
xlog(x)+(n-x)(log(x)+1)=nlog(x)+n- x
最坏情况是O(n)时间。+1是检查数字是否大于LIST中最小的数字。平均情况的预期时间将取决于这n个元素的数学分布。
可能的改进
在最坏的情况下,这个算法可以稍微改进,但恕我直言(我无法证明这一点),这会降低平均行为。渐近行为是一样的。
该算法的改进在于,我们将不检查元素是否大于最小值。对于每个元素,我们将尝试插入它,如果它小于最小值,我们将忽略它。尽管如果我们只考虑我们将面临的最坏的情况,这听起来很荒谬
x log(x) + (n-x)log(x) = nlog(x)
操作。
对于这个用例,我没有看到任何进一步的改进。但是你必须问自己,如果我要对不同的x做多于log(n)次呢?显然,我们会以O(nlog (n))为单位对数组进行排序,并在需要时提取x元素。
你可以在O(n)个时间内完成。只需遍历列表,并跟踪在任何给定点上看到的最大的100个数字,以及该组中的最小值。当你发现一个新的数字大于你的10个数字中的最小值,然后替换它并更新你的新的100的最小值(可能每次你都要花100的常数时间来确定,但这并不影响整体分析)。
一个非常简单的解决方案是遍历该数组100次。也就是O(n)
每次取出最大的数字(并将其值更改为最小值,以便在下一个迭代中看不到它,或者跟踪以前答案的索引(通过跟踪索引,原始数组可以有多个相同的数字))。经过100次迭代,就得到了最大的100个数字。
我对此的直接反应是使用堆,但有一种方法可以使用QuickSelect,而不需要在任何时候保留所有的输入值。
创建一个大小为200的数组,并用前200个输入值填充它。运行QuickSelect并丢弃低100个位置,留下100个空闲位置。读入接下来的100个输入值并再次运行QuickSelect。继续执行,直到以100个批次为单位运行整个输入。
最后是前100个值。对于N个值,您运行QuickSelect大约N/100次。每个快速选择的代价大约是某个常数的200倍,所以总代价是某个常数的2N倍。在我看来,输入的大小是线性的,不管我在这个解释中硬连接的参数大小是100。