最近我参加了一个面试,面试官要求我“编写一个程序,从一个包含10亿个数字的数组中找出100个最大的数字”。
我只能给出一个蛮力解决方案,即以O(nlogn)时间复杂度对数组进行排序,并取最后100个数字。
Arrays.sort(array);
面试官正在寻找一个更好的时间复杂度,我尝试了几个其他的解决方案,但都没有回答他。有没有更好的时间复杂度解决方案?
最近我参加了一个面试,面试官要求我“编写一个程序,从一个包含10亿个数字的数组中找出100个最大的数字”。
我只能给出一个蛮力解决方案,即以O(nlogn)时间复杂度对数组进行排序,并取最后100个数字。
Arrays.sort(array);
面试官正在寻找一个更好的时间复杂度,我尝试了几个其他的解决方案,但都没有回答他。有没有更好的时间复杂度解决方案?
当前回答
从十亿个数字中找到前100个最好使用包含100个元素的最小堆。
首先用遇到的前100个数字对最小堆进行质数。Min-heap将前100个数字中最小的存储在根(顶部)。
现在,当你继续计算其他数字时,只将它们与根数(100中最小的数)进行比较。
如果遇到的新数字大于最小堆的根,则将根替换为该数字,否则忽略它。
作为在最小堆中插入新数字的一部分,堆中最小的数字将移到顶部(根)。
一旦我们遍历了所有的数字,我们将得到最小堆中最大的100个数字。
其他回答
你可以遍历这些数字,需要O(n)
只要发现一个大于当前最小值的值,就将新值添加到一个大小为100的循环队列中。
循环队列的最小值就是新的比较值。继续往队列中添加。如果已满,则从队列中提取最小值。
我用Python写了一个简单的解决方案,以防有人感兴趣。它使用bisect模块和一个临时返回列表,它保持排序。这类似于优先级队列实现。
import bisect
def kLargest(A, k):
'''returns list of k largest integers in A'''
ret = []
for i, a in enumerate(A):
# For first k elements, simply construct sorted temp list
# It is treated similarly to a priority queue
if i < k:
bisect.insort(ret, a) # properly inserts a into sorted list ret
# Iterate over rest of array
# Replace and update return array when more optimal element is found
else:
if a > ret[0]:
del ret[0] # pop min element off queue
bisect.insort(ret, a) # properly inserts a into sorted list ret
return ret
使用100,000,000个元素和最坏情况输入是一个排序列表:
>>> from so import kLargest
>>> kLargest(range(100000000), 100)
[99999900, 99999901, 99999902, 99999903, 99999904, 99999905, 99999906, 99999907,
99999908, 99999909, 99999910, 99999911, 99999912, 99999913, 99999914, 99999915,
99999916, 99999917, 99999918, 99999919, 99999920, 99999921, 99999922, 99999923,
99999924, 99999925, 99999926, 99999927, 99999928, 99999929, 99999930, 99999931,
99999932, 99999933, 99999934, 99999935, 99999936, 99999937, 99999938, 99999939,
99999940, 99999941, 99999942, 99999943, 99999944, 99999945, 99999946, 99999947,
99999948, 99999949, 99999950, 99999951, 99999952, 99999953, 99999954, 99999955,
99999956, 99999957, 99999958, 99999959, 99999960, 99999961, 99999962, 99999963,
99999964, 99999965, 99999966, 99999967, 99999968, 99999969, 99999970, 99999971,
99999972, 99999973, 99999974, 99999975, 99999976, 99999977, 99999978, 99999979,
99999980, 99999981, 99999982, 99999983, 99999984, 99999985, 99999986, 99999987,
99999988, 99999989, 99999990, 99999991, 99999992, 99999993, 99999994, 99999995,
99999996, 99999997, 99999998, 99999999]
我花了40秒计算1亿个元素,所以我不敢计算10亿个元素。为了公平起见,我给它提供了最坏情况的输入(具有讽刺意味的是,一个已经排序的数组)。
这个问题只需一行c++代码就可以用N log(100)的复杂度(而不是N log N)来回答。
std::vector<int> myvector = ...; // Define your 1 billion numbers.
// Assumed integer just for concreteness
std::partial_sort (myvector.begin(), myvector.begin()+100, myvector.end());
最终答案将是一个向量,其中前100个元素保证是数组中最大的100个数字,而其余元素是无序的
c++ STL(标准库)对于这类问题非常方便。
注意:我并不是说这是最佳的解决方案,但它可以挽救你的面试。
使用第n个元素得到第100个元素O(n) 迭代第二次,但只有一次,并输出大于此特定元素的所有元素。
请特别注意,第二步可能很容易并行计算!当你需要一百万个最大的元素时,它也会很有效。
我看到了很多O(N)的讨论,所以我提出了一些不同的想法。
关于这些数字的性质有什么已知的信息吗?如果答案是随机的,那就不要再进一步了,看看其他答案。你不会得到比他们更好的结果。
However! See if whatever list-populating mechanism populated that list in a particular order. Are they in a well-defined pattern where you can know with certainty that the largest magnitude of numbers will be found in a certain region of the list or on a certain interval? There may be a pattern to it. If that is so, for example if they are guaranteed to be in some sort of normal distribution with the characteristic hump in the middle, always have repeating upward trends among defined subsets, have a prolonged spike at some time T in the middle of the data set like perhaps an incidence of insider trading or equipment failure, or maybe just have a "spike" every Nth number as in analysis of forces after a catastrophe, you can reduce the number of records you have to check significantly.
不管怎样,还是有一些值得思考的东西。也许这会帮助你给未来的面试官一个深思熟虑的回答。我知道,如果有人问我这样一个问题来回应这样的问题,我会印象深刻——这将告诉我,他们正在考虑优化。只是要认识到,优化的可能性并不总是存在的。