最近我参加了一个面试,面试官要求我“编写一个程序,从一个包含10亿个数字的数组中找出100个最大的数字”。

我只能给出一个蛮力解决方案,即以O(nlogn)时间复杂度对数组进行排序,并取最后100个数字。

Arrays.sort(array);

面试官正在寻找一个更好的时间复杂度,我尝试了几个其他的解决方案,但都没有回答他。有没有更好的时间复杂度解决方案?


当前回答

可能的改进。

如果文件包含十亿的数字,读取它可能会很长…

为了提高工作效率,你可以:

将文件分成n个部分,创建n个线程,让n个线程在各自的部分中寻找最大的100个数字(使用优先级队列),最后得到所有线程输出的最大的100个数字。 使用像hadoop这样的解决方案,使用集群来完成这样的任务。在这里,您可以进一步分割文件,并更快地输出10亿(或10^12)个数字的文件。

其他回答

我对此的直接反应是使用堆,但有一种方法可以使用QuickSelect,而不需要在任何时候保留所有的输入值。

创建一个大小为200的数组,并用前200个输入值填充它。运行QuickSelect并丢弃低100个位置,留下100个空闲位置。读入接下来的100个输入值并再次运行QuickSelect。继续执行,直到以100个批次为单位运行整个输入。

最后是前100个值。对于N个值,您运行QuickSelect大约N/100次。每个快速选择的代价大约是某个常数的200倍,所以总代价是某个常数的2N倍。在我看来,输入的大小是线性的,不管我在这个解释中硬连接的参数大小是100。

取十亿个数字中的前一百个,然后排序。现在只需遍历十亿,如果源数大于100中最小的数,则按排序顺序插入。你得到的结果更接近于O(n)除以集合的大小。

Recently I am adapting a theory that all the problems in the world could be solved with O(1). And even this one. It wasn't clear from the question what is the range of the numbers. If the numbers are it range from 1 to 10, then probably the the top 100 largest numbers will be a group of 10. The chance that the highest number will be picked out of the 1 billion numbers when the highest number is very small in compare to to 1 billion are very big. So I would give this as an answer in that interview.

首先取1000个元素并将它们添加到一个max堆中。现在取出前最多100个元素并将其存储在某个地方。现在从文件中选择接下来的900个元素,并将它们与最后100个最高的元素一起添加到堆中。

一直重复这个过程,从堆中取出100个元素,从文件中添加900个元素。

从100个元素中最后选出的100个元素将从10亿个数字中选出最大的100个元素。

您可以使用快速选择算法在(按顺序)索引[十亿-101]处查找数字 然后遍历这些数字找出比这个数字更大的数。

array={...the billion numbers...} 
result[100];

pivot=QuickSelect(array,billion-101);//O(N)

for(i=0;i<billion;i++)//O(N)
   if(array[i]>=pivot)
      result.add(array[i]);

该算法时间为:2 X O(N) = O(N)(平均情况性能)

Thomas Jungblut建议的第二个选择是:

使用堆构建最大堆将花费O(N),然后前100个最大的数字将在堆的顶部,所有你需要的是把它们从堆(100 X O(Log(N))。

该算法时间为:O(N) + 100 X O(Log(N)) = O(N)