假设我们有两个堆栈,没有其他临时变量。
是否有可能“构造”一个队列数据结构只使用两个堆栈?
假设我们有两个堆栈,没有其他临时变量。
是否有可能“构造”一个队列数据结构只使用两个堆栈?
当前回答
c#中的解决方案
public class Queue<T> where T : class
{
private Stack<T> input = new Stack<T>();
private Stack<T> output = new Stack<T>();
public void Enqueue(T t)
{
input.Push(t);
}
public T Dequeue()
{
if (output.Count == 0)
{
while (input.Count != 0)
{
output.Push(input.Pop());
}
}
return output.Pop();
}
}
其他回答
您必须从第一个堆栈中取出所有元素来获取底部元素。然后在每次“出队列”操作时将它们都放回第二个堆栈。
下面是使用ES6语法的javascript语言解决方案。
Stack.js
//stack using array
class Stack {
constructor() {
this.data = [];
}
push(data) {
this.data.push(data);
}
pop() {
return this.data.pop();
}
peek() {
return this.data[this.data.length - 1];
}
size(){
return this.data.length;
}
}
export { Stack };
QueueUsingTwoStacks.js
import { Stack } from "./Stack";
class QueueUsingTwoStacks {
constructor() {
this.stack1 = new Stack();
this.stack2 = new Stack();
}
enqueue(data) {
this.stack1.push(data);
}
dequeue() {
//if both stacks are empty, return undefined
if (this.stack1.size() === 0 && this.stack2.size() === 0)
return undefined;
//if stack2 is empty, pop all elements from stack1 to stack2 till stack1 is empty
if (this.stack2.size() === 0) {
while (this.stack1.size() !== 0) {
this.stack2.push(this.stack1.pop());
}
}
//pop and return the element from stack 2
return this.stack2.pop();
}
}
export { QueueUsingTwoStacks };
用法如下:
index.js
import { StackUsingTwoQueues } from './StackUsingTwoQueues';
let que = new QueueUsingTwoStacks();
que.enqueue("A");
que.enqueue("B");
que.enqueue("C");
console.log(que.dequeue()); //output: "A"
保持2个堆栈,让我们称之为收件箱和发件箱。
排队:
将新元素推到收件箱上
出列:
如果发件箱为空,则通过弹出收件箱中的每个元素并将其推入发件箱来重新填充它 弹出并返回发件箱中的顶部元素
使用这种方法,每个元素只在每个堆栈中存在一次——这意味着每个元素将被压入两次,弹出两次,从而给出平摊常数时间操作。
下面是Java中的实现:
public class Queue<E>
{
private Stack<E> inbox = new Stack<E>();
private Stack<E> outbox = new Stack<E>();
public void queue(E item) {
inbox.push(item);
}
public E dequeue() {
if (outbox.isEmpty()) {
while (!inbox.isEmpty()) {
outbox.push(inbox.pop());
}
}
return outbox.pop();
}
}
使用O(1) dequeue(),这与pythonquick的答案相同:
// time: O(n), space: O(n)
enqueue(x):
if stack.isEmpty():
stack.push(x)
return
temp = stack.pop()
enqueue(x)
stack.push(temp)
// time: O(1)
x dequeue():
return stack.pop()
使用O(1) enqueue()(这在本文中没有提到,所以这个答案),它也使用回溯来冒泡并返回最底部的项。
// O(1)
enqueue(x):
stack.push(x)
// time: O(n), space: O(n)
x dequeue():
temp = stack.pop()
if stack.isEmpty():
x = temp
else:
x = dequeue()
stack.push(temp)
return x
显然,这是一个很好的编码练习,因为它效率很低,但仍然很优雅。
public class QueueUsingStacks<T>
{
private LinkedListStack<T> stack1;
private LinkedListStack<T> stack2;
public QueueUsingStacks()
{
stack1=new LinkedListStack<T>();
stack2 = new LinkedListStack<T>();
}
public void Copy(LinkedListStack<T> source,LinkedListStack<T> dest )
{
while(source.Head!=null)
{
dest.Push(source.Head.Data);
source.Head = source.Head.Next;
}
}
public void Enqueue(T entry)
{
stack1.Push(entry);
}
public T Dequeue()
{
T obj;
if (stack2 != null)
{
Copy(stack1, stack2);
obj = stack2.Pop();
Copy(stack2, stack1);
}
else
{
throw new Exception("Stack is empty");
}
return obj;
}
public void Display()
{
stack1.Display();
}
}
对于每一个入队列操作,我们都将其添加到stack1的顶部。每次出队列时,我们都将stack1的内容清空到stack2中,并删除堆栈顶部的元素。出队列的时间复杂度是O(n),因为我们必须将stack1复制到stack2。队列的时间复杂度与常规堆栈相同