假设我们有两个堆栈,没有其他临时变量。
是否有可能“构造”一个队列数据结构只使用两个堆栈?
假设我们有两个堆栈,没有其他临时变量。
是否有可能“构造”一个队列数据结构只使用两个堆栈?
当前回答
我的PHP解决方案
<?php
$_fp = fopen("php://stdin", "r");
/* Enter your code here. Read input from STDIN. Print output to STDOUT */
$queue = array();
$count = 0;
while($line = fgets($_fp)) {
if($count == 0) {
$noOfElement = $line;
$count++;
continue;
}
$action = explode(" ",$line);
$case = $action[0];
switch($case) {
case 1:
$enqueueValue = $action[1];
array_push($queue, $enqueueValue);
break;
case 2:
array_shift($queue);
break;
case 3:
$show = reset($queue);
print_r($show);
break;
default:
break;
}
}
?>
其他回答
我将在Go中回答这个问题,因为Go在其标准库中没有丰富的集合。
由于堆栈真的很容易实现,我想我应该尝试使用两个堆栈来完成一个双端队列。为了更好地理解我是如何得到我的答案的,我将实现分为两部分,第一部分希望更容易理解,但它是不完整的。
type IntQueue struct {
front []int
back []int
}
func (q *IntQueue) PushFront(v int) {
q.front = append(q.front, v)
}
func (q *IntQueue) Front() int {
if len(q.front) > 0 {
return q.front[len(q.front)-1]
} else {
return q.back[0]
}
}
func (q *IntQueue) PopFront() {
if len(q.front) > 0 {
q.front = q.front[:len(q.front)-1]
} else {
q.back = q.back[1:]
}
}
func (q *IntQueue) PushBack(v int) {
q.back = append(q.back, v)
}
func (q *IntQueue) Back() int {
if len(q.back) > 0 {
return q.back[len(q.back)-1]
} else {
return q.front[0]
}
}
func (q *IntQueue) PopBack() {
if len(q.back) > 0 {
q.back = q.back[:len(q.back)-1]
} else {
q.front = q.front[1:]
}
}
它基本上是两个堆栈,我们允许堆栈的底部相互操纵。我还使用了STL命名约定,其中堆栈的传统push、pop、peek操作都有一个front/back前缀,无论它们是指队列的前面还是后面。
上面代码的问题是它没有非常有效地使用内存。事实上,它会不断增长,直到空间耗尽。这太糟糕了。解决这个问题的方法是尽可能重用堆栈空间的底部。我们必须引入一个偏移量来跟踪这一点,因为围棋中的切片一旦收缩就不能在前面生长。
type IntQueue struct {
front []int
frontOffset int
back []int
backOffset int
}
func (q *IntQueue) PushFront(v int) {
if q.backOffset > 0 {
i := q.backOffset - 1
q.back[i] = v
q.backOffset = i
} else {
q.front = append(q.front, v)
}
}
func (q *IntQueue) Front() int {
if len(q.front) > 0 {
return q.front[len(q.front)-1]
} else {
return q.back[q.backOffset]
}
}
func (q *IntQueue) PopFront() {
if len(q.front) > 0 {
q.front = q.front[:len(q.front)-1]
} else {
if len(q.back) > 0 {
q.backOffset++
} else {
panic("Cannot pop front of empty queue.")
}
}
}
func (q *IntQueue) PushBack(v int) {
if q.frontOffset > 0 {
i := q.frontOffset - 1
q.front[i] = v
q.frontOffset = i
} else {
q.back = append(q.back, v)
}
}
func (q *IntQueue) Back() int {
if len(q.back) > 0 {
return q.back[len(q.back)-1]
} else {
return q.front[q.frontOffset]
}
}
func (q *IntQueue) PopBack() {
if len(q.back) > 0 {
q.back = q.back[:len(q.back)-1]
} else {
if len(q.front) > 0 {
q.frontOffset++
} else {
panic("Cannot pop back of empty queue.")
}
}
}
有很多小函数,但6个函数中有3个只是另一个的镜像。
public class QueueUsingStacks<T>
{
private LinkedListStack<T> stack1;
private LinkedListStack<T> stack2;
public QueueUsingStacks()
{
stack1=new LinkedListStack<T>();
stack2 = new LinkedListStack<T>();
}
public void Copy(LinkedListStack<T> source,LinkedListStack<T> dest )
{
while(source.Head!=null)
{
dest.Push(source.Head.Data);
source.Head = source.Head.Next;
}
}
public void Enqueue(T entry)
{
stack1.Push(entry);
}
public T Dequeue()
{
T obj;
if (stack2 != null)
{
Copy(stack1, stack2);
obj = stack2.Pop();
Copy(stack2, stack1);
}
else
{
throw new Exception("Stack is empty");
}
return obj;
}
public void Display()
{
stack1.Display();
}
}
对于每一个入队列操作,我们都将其添加到stack1的顶部。每次出队列时,我们都将stack1的内容清空到stack2中,并删除堆栈顶部的元素。出队列的时间复杂度是O(n),因为我们必须将stack1复制到stack2。队列的时间复杂度与常规堆栈相同
对于c#开发人员,这里是完整的程序:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace QueueImplimentationUsingStack
{
class Program
{
public class Stack<T>
{
public int size;
public Node<T> head;
public void Push(T data)
{
Node<T> node = new Node<T>();
node.data = data;
if (head == null)
head = node;
else
{
node.link = head;
head = node;
}
size++;
Display();
}
public Node<T> Pop()
{
if (head == null)
return null;
else
{
Node<T> temp = head;
//temp.link = null;
head = head.link;
size--;
Display();
return temp;
}
}
public void Display()
{
if (size == 0)
Console.WriteLine("Empty");
else
{
Console.Clear();
Node<T> temp = head;
while (temp!= null)
{
Console.WriteLine(temp.data);
temp = temp.link;
}
}
}
}
public class Queue<T>
{
public int size;
public Stack<T> inbox;
public Stack<T> outbox;
public Queue()
{
inbox = new Stack<T>();
outbox = new Stack<T>();
}
public void EnQueue(T data)
{
inbox.Push(data);
size++;
}
public Node<T> DeQueue()
{
if (outbox.size == 0)
{
while (inbox.size != 0)
{
outbox.Push(inbox.Pop().data);
}
}
Node<T> temp = new Node<T>();
if (outbox.size != 0)
{
temp = outbox.Pop();
size--;
}
return temp;
}
}
public class Node<T>
{
public T data;
public Node<T> link;
}
static void Main(string[] args)
{
Queue<int> q = new Queue<int>();
for (int i = 1; i <= 3; i++)
q.EnQueue(i);
// q.Display();
for (int i = 1; i < 3; i++)
q.DeQueue();
//q.Display();
Console.ReadKey();
}
}
}
不过,时间的复杂性会更糟。一个好的队列实现在常数时间内完成所有事情。
Edit
不知道为什么我的答案在这里被否决了。如果我们编程,我们会关心时间复杂度,使用两个标准堆栈来创建队列是低效的。这是一个非常有效和相关的观点。如果有人觉得有必要再投反对票,我很想知道为什么。
更详细一点:关于为什么使用两个堆栈比使用一个队列更糟糕:如果您使用两个堆栈,并且有人在发件箱为空时调用dequeue,则需要线性时间才能到达收件箱的底部(正如您可以在Dave的代码中看到的那样)。
您可以将队列实现为单链表(每个元素指向下一个插入的元素),保留一个额外的指针指向最后一个插入的元素进行推操作(或使其成为循环列表)。在此数据结构上实现队列和出队列非常容易,只需常数时间即可完成。这是最坏情况的常数时间,不是平摊。而且,正如注释中要求澄清的那样,最坏情况下常数时间严格来说比平摊常数时间要好。
使用O(1) dequeue(),这与pythonquick的答案相同:
// time: O(n), space: O(n)
enqueue(x):
if stack.isEmpty():
stack.push(x)
return
temp = stack.pop()
enqueue(x)
stack.push(temp)
// time: O(1)
x dequeue():
return stack.pop()
使用O(1) enqueue()(这在本文中没有提到,所以这个答案),它也使用回溯来冒泡并返回最底部的项。
// O(1)
enqueue(x):
stack.push(x)
// time: O(n), space: O(n)
x dequeue():
temp = stack.pop()
if stack.isEmpty():
x = temp
else:
x = dequeue()
stack.push(temp)
return x
显然,这是一个很好的编码练习,因为它效率很低,但仍然很优雅。