有没有比这个方法更简洁的方法来获取整数的位数?

int numDigits = String.valueOf(1000).length();

当前回答

一个非常简单的解决方案:

public int numLength(int n) {
  for (int length = 1; n % Math.pow(10, length) != n; length++) {}
  return length;
}

其他回答

我还没有看到基于乘法的解决方案。对数、除法和基于字符串的解决方案将在数百万个测试用例中变得相当笨拙,所以这里有一个int型的解决方案:

/**
 * Returns the number of digits needed to represents an {@code int} value in 
 * the given radix, disregarding any sign.
 */
public static int len(int n, int radix) {
    radixCheck(radix); 
    // if you want to establish some limitation other than radix > 2
    n = Math.abs(n);

    int len = 1;
    long min = radix - 1;

    while (n > min) {
        n -= min;
        min *= radix;
        len++;
    }

    return len;
}

以10为基底,这是可行的,因为n本质上是与9,99,999…因为min是9,90,900…n被减去9,90,900…

不幸的是,仅仅因为溢出而替换int的每个实例是不能移植到long的。另一方面,它恰好适用于2垒和10垒(但对于大多数其他垒来说严重失败)。您将需要一个用于溢出点的查找表(或除法测试……)电子战)

/**
 * For radices 2 &le r &le Character.MAX_VALUE (36)
 */
private static long[] overflowpt = {-1, -1, 4611686018427387904L,
    8105110306037952534L, 3458764513820540928L, 5960464477539062500L,
    3948651115268014080L, 3351275184499704042L, 8070450532247928832L,
    1200757082375992968L, 9000000000000000000L, 5054470284992937710L,
    2033726847845400576L, 7984999310198158092L, 2022385242251558912L,
    6130514465332031250L, 1080863910568919040L, 2694045224950414864L,
    6371827248895377408L, 756953702320627062L, 1556480000000000000L,
    3089447554782389220L, 5939011215544737792L, 482121737504447062L,
    839967991029301248L, 1430511474609375000L, 2385723916542054400L,
    3902460517721977146L, 6269893157408735232L, 341614273439763212L,
    513726300000000000L, 762254306892144930L, 1116892707587883008L,
    1617347408439258144L, 2316231840055068672L, 3282671350683593750L,
    4606759634479349760L};

public static int len(long n, int radix) {
    radixCheck(radix);
    n = abs(n);

    int len = 1;
    long min = radix - 1;
    while (n > min) {
        len++;
        if (min == overflowpt[radix]) break;
        n -= min;
        min *= radix;

    }

    return len;
}

我看到有人使用String库,甚至使用Integer类。这没什么问题,但是求位数的算法并不复杂。我在这个例子中使用的是long类型,但它也可以用于int类型。

 private static int getLength(long num) {

    int count = 1;

    while (num >= 10) {
        num = num / 10;
        count++;
    }

    return count;
}

这取决于你对“整洁”的定义。我认为下面的代码相当简洁,运行速度也很快。

它基于Marian的回答,扩展到所有long值,并使用?:运营商。

private static long[] DIGITS = { 1l,
                                 10l,
                                 100l,
                                 1000l,
                                 10000l,
                                 100000l,
                                 1000000l,
                                 10000000l,
                                 100000000l,
                                 1000000000l,
                                 10000000000l,
                                 100000000000l,
                                 1000000000000l,
                                 10000000000000l,
                                 100000000000000l,
                                 1000000000000000l,
                                 10000000000000000l,
                                 100000000000000000l,
                                 1000000000000000000l };

public static int numberOfDigits(final long n)
{
    return n == Long.MIN_VALUE ? 19 : n < 0l ? numberOfDigits(-n) :
            n < DIGITS[8] ? // 1-8
              n < DIGITS[4] ? // 1-4
                n < DIGITS[2] ? // 1-2
                  n < DIGITS[1] ? 1 : 2 : // 1-2
                        n < DIGITS[3] ? 3 : 4 : // 3-4
                      n < DIGITS[6] ? // 5-8
                        n < DIGITS[5] ? 5 : 6 : // 5-6
                      n < DIGITS[7] ? 7 : 8 : // 7-8
            n < DIGITS[16] ? // 9-16
              n < DIGITS[12] ? // 9-12
                n < DIGITS[10] ? // 9-10
                  n < DIGITS[9] ? 9 : 10 : // 9-10
                        n < DIGITS[11] ? 11 : 12 : // 11-12
                      n < DIGITS[14] ? // 13-16
                        n < DIGITS[13] ? 13 : 14 : // 13-14
                      n < DIGITS[15] ? 15 : 16 : // 15-16
            n < DIGITS[17] ? 17 :  // 17-19
            n < DIGITS[18] ? 18 :
            19;
}

Marian的解决方案适用于长类型数字(高达9,223,372,036,854,775,807),以防有人想要复制和粘贴它。 在程序中,我写了这个,因为10000以内的数字更有可能,所以我为它们做了一个特定的分支。不管怎样,这不会有太大的区别。

public static int numberOfDigits (long n) {     
    // Guessing 4 digit numbers will be more probable.
    // They are set in the first branch.
    if (n < 10000L) { // from 1 to 4
        if (n < 100L) { // 1 or 2
            if (n < 10L) {
                return 1;
            } else {
                return 2;
            }
        } else { // 3 or 4
            if (n < 1000L) {
                return 3;
            } else {
                return 4;
            }
        }           
    } else  { // from 5 a 20 (albeit longs can't have more than 18 or 19)
        if (n < 1000000000000L) { // from 5 to 12
            if (n < 100000000L) { // from 5 to 8
                if (n < 1000000L) { // 5 or 6
                    if (n < 100000L) {
                        return 5;
                    } else {
                        return 6;
                    }
                } else { // 7 u 8
                    if (n < 10000000L) {
                        return 7;
                    } else {
                        return 8;
                    }
                }
            } else { // from 9 to 12
                if (n < 10000000000L) { // 9 or 10
                    if (n < 1000000000L) {
                        return 9;
                    } else {
                        return 10;
                    }
                } else { // 11 or 12
                    if (n < 100000000000L) {
                        return 11;
                    } else {
                        return 12;
                    }
                }
            }
        } else { // from 13 to ... (18 or 20)
            if (n < 10000000000000000L) { // from 13 to 16
                if (n < 100000000000000L) { // 13 or 14
                    if (n < 10000000000000L) { 
                        return 13;
                    } else {
                        return 14;
                    }
                } else { // 15 or 16
                    if (n < 1000000000000000L) {
                        return 15;
                    } else {
                        return 16;
                    }
                }
            } else { // from 17 to ...¿20?
                if (n < 1000000000000000000L) { // 17 or 18
                    if (n < 100000000000000000L) {
                        return 17;
                    } else {
                        return 18;
                    }
                } else { // 19? Can it be?
                    // 10000000000000000000L is'nt a valid long.
                    return 19;
                }
            }
        }
    }
}

现在还不能留言,所以我会单独回复。

基于对数的解决方案不能计算非常大的长整数的正确位数,例如:

long n = 99999999999999999L;

// correct answer: 17
int numberOfDigits = String.valueOf(n).length();

// incorrect answer: 18
int wrongNumberOfDigits = (int) (Math.log10(n) + 1); 

基于对数的解决方案在大整数中计算不正确的位数