有没有比这个方法更简洁的方法来获取整数的位数?

int numDigits = String.valueOf(1000).length();

当前回答

最快的方法:分而治之。

Assuming your range is 0 to MAX_INT, then you have 1 to 10 digits. You can approach this interval using divide and conquer, with up to 4 comparisons per each input. First, you divide [1..10] into [1..5] and [6..10] with one comparison, and then each length 5 interval you divide using one comparison into one length 3 and one length 2 interval. The length 2 interval requires one more comparison (total 3 comparisons), the length 3 interval can be divided into length 1 interval (solution) and a length 2 interval. So, you need 3 or 4 comparisons.

没有除法,没有浮点运算,没有昂贵的对数,只有整数比较。

代码(长但快):

if (n < 100000) {
    // 5 or less
    if (n < 100){
        // 1 or 2
        if (n < 10)
            return 1;
        else
            return 2;
    } else {
        // 3 or 4 or 5
        if (n < 1000)
            return 3;
        else {
            // 4 or 5
            if (n < 10000)
                return 4;
            else
                return 5;
        }
    }
} else {
    // 6 or more
    if (n < 10000000) {
        // 6 or 7
        if (n < 1000000)
            return 6;
        else
            return 7;
    } else {
        // 8 to 10
        if (n < 100000000)
            return 8;
        else {
            // 9 or 10
            if (n < 1000000000)
                return 9;
            else
                return 10;
        }
    }
}

基准测试(在JVM预热之后)——查看下面的代码以了解基准测试是如何运行的:

基线方法(使用String.length): 2145毫秒 Log10方法:711ms = 3.02次 和基线一样快 重复除:2797ms = 0.77次 和基线一样快 分治:74ms = 28.99 时间和基线一样快

完整的代码:

public static void main(String[] args) throws Exception {
    
    // validate methods:
    for (int i = 0; i < 1000; i++)
        if (method1(i) != method2(i))
            System.out.println(i);
    for (int i = 0; i < 1000; i++)
        if (method1(i) != method3(i))
            System.out.println(i + " " + method1(i) + " " + method3(i));
    for (int i = 333; i < 2000000000; i += 1000)
        if (method1(i) != method3(i))
            System.out.println(i + " " + method1(i) + " " + method3(i));
    for (int i = 0; i < 1000; i++)
        if (method1(i) != method4(i))
            System.out.println(i + " " + method1(i) + " " + method4(i));
    for (int i = 333; i < 2000000000; i += 1000)
        if (method1(i) != method4(i))
            System.out.println(i + " " + method1(i) + " " + method4(i));
    
    // work-up the JVM - make sure everything will be run in hot-spot mode
    allMethod1();
    allMethod2();
    allMethod3();
    allMethod4();
    
    // run benchmark
    Chronometer c;
    
    c = new Chronometer(true);
    allMethod1();
    c.stop();
    long baseline = c.getValue();
    System.out.println(c);
    
    c = new Chronometer(true);
    allMethod2();
    c.stop();
    System.out.println(c + " = " + StringTools.formatDouble((double)baseline / c.getValue() , "0.00") + " times as fast as baseline");
    
    c = new Chronometer(true);
    allMethod3();
    c.stop();
    System.out.println(c + " = " + StringTools.formatDouble((double)baseline / c.getValue() , "0.00") + " times as fast as baseline");
    
    c = new Chronometer(true);
    allMethod4();
    c.stop();
    System.out.println(c + " = " + StringTools.formatDouble((double)baseline / c.getValue() , "0.00") + " times as fast as baseline");
}


private static int method1(int n) {
    return Integer.toString(n).length();
}

private static int method2(int n) {
    if (n == 0)
        return 1;
    return (int)(Math.log10(n) + 1);
}

private static int method3(int n) {
    if (n == 0)
        return 1;
    int l;
    for (l = 0 ; n > 0 ;++l)
        n /= 10;
    return l;
}

private static int method4(int n) {
    if (n < 100000) {
        // 5 or less
        if (n < 100) {
            // 1 or 2
            if (n < 10)
                return 1;
            else
                return 2;
        } else {
            // 3 or 4 or 5
            if (n < 1000)
                return 3;
            else {
                // 4 or 5
                if (n < 10000)
                    return 4;
                else
                    return 5;
            }
        }
    } else {
        // 6 or more
        if (n < 10000000) {
            // 6 or 7
            if (n < 1000000)
                return 6;
            else
                return 7;
        } else {
            // 8 to 10
            if (n < 100000000)
                return 8;
            else {
                // 9 or 10
                if (n < 1000000000)
                    return 9;
                else
                    return 10;
            }
        }
    }
}


private static int allMethod1() {
    int x = 0;
    for (int i = 0; i < 1000; i++)
        x = method1(i);
    for (int i = 1000; i < 100000; i += 10)
        x = method1(i);
    for (int i = 100000; i < 1000000; i += 100)
        x = method1(i);
    for (int i = 1000000; i < 2000000000; i += 200)
        x = method1(i);
    
    return x;
}

private static int allMethod2() {
    int x = 0;
    for (int i = 0; i < 1000; i++)
        x = method2(i);
    for (int i = 1000; i < 100000; i += 10)
        x = method2(i);
    for (int i = 100000; i < 1000000; i += 100)
        x = method2(i);
    for (int i = 1000000; i < 2000000000; i += 200)
        x = method2(i);
    
    return x;
}

private static int allMethod3() {
    int x = 0;
    for (int i = 0; i < 1000; i++)
        x = method3(i);
    for (int i = 1000; i < 100000; i += 10)
        x = method3(i);
    for (int i = 100000; i < 1000000; i += 100)
        x = method3(i);
    for (int i = 1000000; i < 2000000000; i += 200)
        x = method3(i);
    
    return x;
}

private static int allMethod4() {
    int x = 0;
    for (int i = 0; i < 1000; i++)
        x = method4(i);
    for (int i = 1000; i < 100000; i += 10)
        x = method4(i);
    for (int i = 100000; i < 1000000; i += 100)
        x = method4(i);
    for (int i = 1000000; i < 2000000000; i += 200)
        x = method4(i);
    
    return x;
}

基准:

基线方法(String.length): 2145ms Log10方法:711ms =基线速度的3.02倍 重复除:2797ms =基线速度的0.77倍 分治:74毫秒= 28.99倍的基线速度


Edit

在我写完基准测试之后,我偷偷地看了一下Integer。toString来自Java 6,我发现它使用:

final static int [] sizeTable = { 9, 99, 999, 9999, 99999, 999999, 9999999,
                                  99999999, 999999999, Integer.MAX_VALUE };

// Requires positive x
static int stringSize(int x) {
    for (int i=0; ; i++)
        if (x <= sizeTable[i])
            return i+1;
}

我以我的分治方案为基准:

分治法:104毫秒 Java 6解决方案-迭代和比较:406ms

我的速度大约是Java 6解决方案的4倍。

其他回答

用设计(基于问题)。这是分治法的另一种。我们将首先定义一个枚举(考虑到它仅用于unsigned int)。

public enum IntegerLength {
    One((byte)1,10),
    Two((byte)2,100),
    Three((byte)3,1000),
    Four((byte)4,10000),
    Five((byte)5,100000),
    Six((byte)6,1000000),
    Seven((byte)7,10000000),
    Eight((byte)8,100000000),
    Nine((byte)9,1000000000);

    byte length;
    int value;

    IntegerLength(byte len,int value) {
        this.length = len;
        this.value = value;
    }

    public byte getLenght() {
        return length;
    }

    public int getValue() {
        return value;
    }
}

现在我们将定义一个类,它遍历枚举的值,并比较并返回适当的长度。

public class IntegerLenght {
    public static byte calculateIntLenght(int num) {    
        for(IntegerLength v : IntegerLength.values()) {
            if(num < v.getValue()){
                return v.getLenght();
            }
        }
        return 0;
    }
}

此解决方案的运行时间与分治方法相同。

一个人想要这样做主要是因为他/她想要“呈现”它,这主要意味着它最终需要显式或隐式地“toString-ed”(或以另一种方式转换);才能呈现(例如打印出来)。如果是这种情况,那么只需尝试显式地使用必要的“toString”并计算位数。

玛丽安的解决方案,现在是三元:

 public int len(int n){
        return (n<100000)?((n<100)?((n<10)?1:2):(n<1000)?3:((n<10000)?4:5)):((n<10000000)?((n<1000000)?6:7):((n<100000000)?8:((n<1000000000)?9:10)));
    }

因为我们可以。

这是我做的一个非常简单的方法,适用于任何数字:

public static int numberLength(int userNumber) {

    int numberCounter = 10;
    boolean condition = true;
    int digitLength = 1;

    while (condition) {
        int numberRatio = userNumber / numberCounter;
        if (numberRatio < 1) {
            condition = false;
        } else {
            digitLength++;
            numberCounter *= 10;
        }
    }

    return digitLength; 
}

它的工作方式是使用数字计数器变量,即10 = 1位空格。例如。1 = 1十分之一=> 1位空格。因此,如果你有int number = 103342;你会得到6,因为这相当于。000001个空格。还有,谁有更好的numberCounter变量名?我想不出比这更好的了。

编辑:我想到了一个更好的解释。本质上,这个while循环所做的就是让你的数字除以10,直到它小于1。从本质上讲,当你将一个数除以10时,你是在向后移动一个数字空间,所以你只需将它除以10,直到你的数字中的位数小于1。

下面是另一个版本,可以计算小数中的数字数量:

public static int repeatingLength(double decimalNumber) {

    int numberCounter = 1;
    boolean condition = true;
    int digitLength = 1;

    while (condition) {
        double numberRatio = decimalNumber * numberCounter;

        if ((numberRatio - Math.round(numberRatio)) < 0.0000001) {
            condition = false;
        } else {
            digitLength++;
            numberCounter *= 10;
        }
    }
    return digitLength - 1;
}

现在还不能留言,所以我会单独回复。

基于对数的解决方案不能计算非常大的长整数的正确位数,例如:

long n = 99999999999999999L;

// correct answer: 17
int numberOfDigits = String.valueOf(n).length();

// incorrect answer: 18
int wrongNumberOfDigits = (int) (Math.log10(n) + 1); 

基于对数的解决方案在大整数中计算不正确的位数